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Resumo

Esta tese, desenvolvida no ambito do projeto europeu “Mangroves, Mangrove Rice, and
Mangrove People”, visou a caracterizagao do cultivo de arroz nos ecossistemas de mangal
da Guiné-Bissau, onde a seguranca alimentar depende de sistemas agricolas muito
sensiveis a variabilidade climatica e as condigdes de salinidade dos solos. O objetivo
principal foi quantificar o balango hidrico-salino nesses sistemas de producao de arroz,
visando melhorar as praticas de gestdo do solo, da 4gua e da cultura. Para tal, aplicaram-
se metodologias interdisciplinares, incluindo ensaios de campo, entrevistas sobre
conhecimentos locais, amostragem e analise de solos, caracterizagao biofisica, modelagao
geoespacial, utilizagdo de indices de vegetagdo, técnicas de aprendizagem automatica,
estimativas da evapotranspiragdo de referéncia (ET,) em condigdes de escassez de dados,
dados meteorologicos usando, observagdes ou de reanalise (AgERAS, MERRA-2), e
simulagdes das dinamicas hidrico-salinas com HYDRUS-1D. Os resultados revelaram
maior eficiéncia na captagdo de 4gua da chuva no norte (16%) em comparacao com o sul
(15%), bem como condic¢des 6timas de plasticidade do solo para mobilizacdo em Elalab
(18,6%) e Cafine-Cafal (35,5%). As zonas salinas foram mapeadas com um conjunto de
indices incluindo o normalized difference salinity index (RNDSI), o normalized salinity
index (NDSI), normalized difference water index (NDWI), e o indice de textura (Limo),
com o modelo Random Forest a apresentar a maior precisdo preditiva (RMSE = 25,49 dS
m™). A aproximagio simplificada baseada nos dados de temperatura para estimar a ET,
demonstrou maior precisao (RMSE < 26%), do que a utiliza¢do dos dados de reanalise,
mesmo quando apos corre¢do de viés. A modelacdo hidrico-salina permitiu estimar os
impactos potenciais a salinidade na produtividade do arroz, que poderao levar a redugdes
de até 60%. Concluiu-se que os fatores-chave no controlo da salinidade no solo sdo a
quantidade da precipitagdo sazonal, a profundidade do nivel freatico e a qualidade da dgua
subterranea. Este estudo oferece uma base técnica solida para apoio a produgado de arroz
de mangal, destacando a necessidade de inovag¢do na infraestrutura hidrica e conservagao

ecologica perante as alteracdes climaticas.

Palavras-chave: Adaptacdo climatica, salinizagdo do solo, producao sustentivel,

aprendizagem automatica, modelagao.



Abstract

This thesis, developed within the framework of the European project “Mangroves,
Mangrove Rice, and Mangrove People,” focused the characterization of the rice
cultivation in the mangrove ecosystems of Guinea-Bissau, where food security relies on
agricultural systems highly sensitive to climate variability and hypersaline soil
conditions. The main objective of the study was to quantify the hydro-saline balances
within the mangrove rice production system, aiming to improve soil, water, and crop
management practices. To achieve this, a range of interdisciplinary methodologies were
applied, including field trials, interviews on indigenous knowledge and technological
innovation, soil sampling and analysis, biophysical characterization, geospatial modeling,
the use of vegetation indices, machine learning techniques, estimating reference
evapotranspiration (ET,) under data-scarce conditions, using observed, meteorological
variables or reanalysis datasets (AgERAS, MERRA-2), and hydro-saline dynamic
simulations using HYDRUS-1D. The results revealed more efficient rainwater harvesting
in the north (16%) compared to the south (15%), along with optimal soil plasticity
conditions for tillage in Elalab (18.6%) and Cafine-Cafal (35.5%). Saline zones were
mapped using normalized difference salinity index (RNDSI), normalized salinity index
(NDSI), normalized difference water index (NDWI) indices, and Silt texture, with
Random Forest achieving the highest predictive accuracy (RMSE = 25.49 dS m™). The
temperature-based approach for ET, estimation showed higher accuracy (RMSE < 26%)
than either reanalysis data set even after a bias correction was applied. Hydro-saline
modeling enabled the estimation of potential impacts on rice yields, which could decline
by up to 60%. It was concluded that the key factors for soil salinity control included the
amount and distribution of seasonal rainfall, groundwater depth, and groundwater quality.
This study provides a solid technical background for more resilient rice production in
mangrove agroecosystems, highlighting the urgent need for innovation in water

infrastructure and ecological conservation in the face of climate change.

Keywords: Climate adaptation, Soil Salinization, Sustainable production, Machine-

Learning, Modeling.



Resumen

Esta tesis, enmarcada en el proyecto europeo "Mangroves, Mangrove Rice, and
Mangrove People", analizo el balance hidrico-salino del cultivo de arroz en manglares de
Ginea-Bissau, donde la seguridad alimentaria depende de sistemas agricolas altamente
sensibles a la variabilidad climatica y a las condiciones de los suelos. El objetivo principal
fue cuantificar el balance hidrico-salino dentro del sistema de produccién de arroz en
zonas de manglar, con el fin de mejorar las practicas de manejo del suelo, del agua y del
cultivo. Para ello, se emplearon diversas metodologias interdisciplinarias, incluyendo
ensayos en campo, analisis de suelos, caracterizacion biofisica, modelado geoespacial,
uso de indices satelitales, técnicas de aprendizaje automatico, estimacion de la
evapotranspiracion de referencia del cultivo (ET,) en condiciones de escasez de datos,
uso de reanalisis (AgERAS, MERRA-2) y simulaciones de dindmicas hidrico-salinas
mediante HYDRUS-1D. Los resultados mostraron una eficiente recoleccion de agua de
lluvia en el norte (16 %) en comparacion con el sur (15 %), con condiciones de plasticidad
optimas de labranza en Elalab (18.6 %) y Cafine-Cafal (35.5 %). Los indices normalized
difference salinity index (RNDSI), normalized salinity index (NDSI), normalized
difference water index (NDWI) indices, y el limo permitieron mapear las zonas salinas
utilizando Random Forest (RMSE = 25.49 dS m™). La aproximacion simplificada con
base a los datos de temperatura para estimar la ET,, demostré mayor precision (RMSE <
26 %) que la utilizacion de los datos de reandlisis, mismo cuando fue aplicado una
correccion por sesgo (Bias). El modelado hidrico-salino permitié identificar los posibles
impactos sobre los rendimientos de los cultivos, los cuales podrian disminuir hasta en un
60 %. Se concluye que los factores clave en el control de la salinidad del suelo fueron la
cantidad y distribucion de las lluvias estacionales, la profundidad del agua subterranea y
su calidad. Este estudio proporciona una base técnica solida para una produccion de arroz
mas resiliente en suelos de manglar, destacando la necesidad de innovacion en

infraestructura hidrica frente al cambio climatico.

Palabras clave: Adaptacion Climatica, Salinizacion del Suelo, Produccion Sostenible,

Aprendizaje Automatico, Modelizacion.



Resumo estendido

Esta tese, faz parte do projeto "Mangroves, Mangrove Rice, and Mangrove People:
Sustainably Improving Rice Production Ecosystems and Livelihoods." Este projeto,
financiado pela Unido Europeia, especificamente no ambito do programa de Inovagdo
Inteligente para o Development Smart Innovation through Research in Agriculture
(DeSIRA), visa desenvolver ferramentas e praticas que permitam enfrentar os desafios da

producao de arroz em sistemas de mangais na Guiné Bissau.

A produgdo de arroz nos sistemas de mangal (MSRPS, na sigla em inglés) na Guiné-
Bissau (GB) ¢ essencial para a seguranca alimentar e nutricional das populagdes costeiras
do pais. Este sistema, que ¢ caracterizado pela modificacdo antropogénica dos solos de
mangal, e enfrenta graves desafios devido a variabilidade nos padrdes e quantidade de

precipita¢do e ao aumento da salinidade do solo.

Estes fatores afetam negativamente a produtividade do arroz, tornando imprescindivel
identificar as principais limitagdes na gestdo da agua e do solo. Os solos de mangal no
pais dependem do armazenamento de dgua doce (proveniente da chuva) para a lavagem
dos sais do perfil do solo e tornar as terras produtivas. No entanto, a variabilidade de
precipitagdo tem vindo a diminuir a adequada lixiviagdo dos sais, afetando o crescimento
e produtividade do arroz. A variabilidade climatica tem vindo a agravar-se pelas
mudancas climéaticas, pelo que ¢ vital implementar ferramentas e estratégias que visam
para melhorar a eficiéncia no uso da agua e a gestdo do solo, essenciais para a

sustentabilidade deste sistema agricola.

Este estudo abordou os desafios da produgado de arroz em mangal através de metodologias
interdisciplinares que integram a caracterizagdo biofisica do sistema, o diagnostico da

salinidade do solo e a melhoria das praticas de gestdo da dgua.

Como primeira abordagem, foram recolhidas informag¢des meteorologicas e dados sobre
a produtividade do arroz, obtidos junto dos Ministérios da Agricultura e da Meteorologia
do pais, embora com niveis varidveis de precisdo. Os documentos analisados estavam
redigidos em diversas linguas (inglés, francés, portugués e espanhol) complementados
com entrevistas centradas no conhecimento endogeno e na inovagao tecnoldgica,
conduzidas na lingua propria dos agricultores (crioulo). Para além da revisao

bibliografica, esta tese integrou investigacdo empirica, incluindo transeptos realizados
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para observacdes das caracteristicas morfoldgicas do solo as quais foram realizados com

agricultores, com descrigdes in situ das diferentes agroecologias dos arrozais.

Seguidamente, realizaram-se amostragens sistematicas de solo em varias zonas de cultivo
e procedeu-se a caracterizagdo biofisica de MSRPS em trés aldeias da Guiné-Bissau,
utilizadas como estudo de caso. Foram realizadas diversas analises, nomeadamente a
medi¢do da consisténcia/plasticidade dos solos e dos niveis de salinidade.
Adicionalmente, recorreram-se a modelos geoespaciais e técnicas de aprendizagem
automatica (Random Forest, Support Vector Machines, and Convolutional Neural
Networks) para elaborar mapas de salinidade dos solos. Estes modelos permitiram
identificar areas hipersalinas, essenciais para melhorar a gestdo agricola e mitigar os

efeitos da salinizagao.

A estimativa das necessidades hidricas das culturas ¢ geralmente realizada utilizando o
método dos coeficientes culturais da FAO, que consiste na multiplicagdo da
evapotranspiragdo de referéncia (ET,) por um coeficiente cultural (K¢). O método FAO-
PM para o célculo da ET, depende de um conjunto de dados meteoroldgicos, que, em
paises como a Guiné-Bissau, muitas vezes estdo indisponiveis, incompletos ou
apresentam qualidade insuficiente, devido a manutencdo inadequada dos equipamentos
de medicao. Esta tese avaliou abordagens alternativas, conforme descrito nas diretrizes
revistas do FAOS56, para estimar a ET, utilizando apenas dados de temperatura. Os
resultados indicaram que o método Penman-Monteith baseado somente em dados de
temperatura (PMT) € geralmente preciso, com um RMSE que nao excede 26% da média
diaria da ET,. Relativamente a radiagao de onda curtao comprimento de onda, a utilizagao
da diferenca de temperatura como preditor, em combinagao com equacdes de regressao
linear multipla focadas em agrupamentos (clusters) para estimar o coeficiente de
ajustamento da radiacdo (kgrs), produziu resultados precisos. Além disso, os resultados
destacam que o método PMT apresentou estimativas de ET, mais precisas do que os
dados de reandlise provenientes de diferentes fontes (AgERAS e MERRA?2), mesmo apos
terem sido objeto de uma corre¢do de viés. No entanto, na auséncia de dados observados
de temperatura, os dados AgERAS podem ser utilizados com precaugdo como fonte
alternativa, embora seja necessdrio cautela devido aos erros desvios e incertezas
associados a estimativa de ET, com este produto de reanalise. Estes resultados apresentam

uma abordagem pratica para melhorar a gestdo da agua na agricultura em



agroecossistemas tropicais da Africa Ocidental, especialmente em regides com acesso

limitado a dados meteoroldgicos fidveis.

A ET, ¢ um dos dados de entrada do modelo de fluxos HYDRUS-1D o qual foi usado
para simular a dindmica da salinidade e o balango hidrico do solo, considerando multiplos
cenarios de chuva, a profundidade do nivel freatico e salinidade de solo, o que ajudou a

prever o impacto na produ¢do do arroz.

Os resultados mostram que os niveis de salinidade nas zonas de cultivo de arroz na GB
dependem, em grande medida, da quantidade e distribuicdo das chuvas sazonais, bem
como da qualidade e profundidade do lencol freatico. As simulagdes demonstraram que
as variagdes na precipitacdo e nas profundidades do lengol freatico sdo os principais
fatores que contribuem para a salinizagao do solo, o que, por sua vez, afeta os rendimentos
do cultivo de arroz. Por exemplo, registaram-se eficiéncias de recolha de 4gua da chuva

de 15% na regido sul e 16% na regido norte.

Relativamente aos indices de plasticidade, os valores obtidos foram de 18,6% para Elalab
e 35,5% para Cafine-Cafal, em humidade gravimétrica, indicando os momentos ideais
para o inicio das operagdes de mobilizacdo do solo. Além disso, a utilizagdo de modelos
preditivos facilitou a identificagdo de areas com elevadas concentragdes de salinidade.
Por exemplo, o modelo Random Forest demonstrou a maior precisdo na previsdao da
salinidade (R?= 0,80, dS m™!, RMSE = 25,49 dS m™!, NRMSE = 51 %), com o indice de
salinidade de diferenca normalizada (RNDSI, calculado com red edge), evidenciando a

sua precisdo no mapeamento e previsao de regides hipersalinas.

Foram também identificadas estratégias eficazes para contrariar os efeitos da salinidade
nos MSRPS, incluindo a melhoria da gestdo de diques e estruturas de drenagem para
evitar a entrada de agua salgada durante as épocas de producdo de arroz, o uso de
variedades de arroz mais tolerantes a salinidade nas zonas mais afetadas, ¢ a adocao de

variedades de ciclo longo em areas com melhores condi¢des hidricas.

O sistema de producdo de arroz nos sistemas de mangal no pais ¢ altamente dindmico e
complexo, influenciado por vérios fatores, incluindo a salinidade do solo, a variabilidade
climatica e a falta de infraestrutura adequada para a medigdo e gestdo da agua. Os
resultados obtidos nestas investigacdes sublinham a importancia de implementar

tecnologias de diagnostico de solos € modelos preditivos para otimizar a gestao hidrica e
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a eficiéncia no uso dos recursos naturais. A adogdo destas ferramentas permitird aos
agricultores da GB uma primeira abordagem para mitigar os efeitos negativos da
salinizacdo no crescimento do arroz, garantindo uma producao de arroz mais sustentavel
e resiliente face aos impactos das variagcdes nas chuvas, decorrentes das alteracdes
climaticas. E crucial continuar a explorar inovagdes na infraestrutura de gestdo da agua e
promover a conserva¢ao dos mangais, o que contribuird para a estabilidade ecologica e

produtiva do sistema.

No entanto, persistem desafios importantes. As pressdes sociais € economicas levam
muitas comunidades a expandir as dreas de cultivo para zonas sensiveis, agravando a
degradagdo ambiental ¢ aumentando o risco de falhas produtivas (caso das bolanhas
novas). A auséncia de mecanismos de compensacdo pelo governo de GB que sejam
adequados para estas populagdes vulneraveis dificulta a conservacao dos servigos
ecossistémicos. Além disso, os projetos de desenvolvimento frequentemente carecem de
alinhamento com as necessidades reais dos agricultores, resultando em fraca eficacia e
pouca sustentabilidade porque trabalham com informagdes desenvolvidas externas ao
pais. A escassez de programas de restauracdo de campos salinizados ou abandonados
também compromete a resiliéncia do sistema. Em sinteses, esta tese faz uma aproximacao
multidisciplinar donde oferece uma orientacao solida para melhorar a produtividade do
sistema de arroz em mangal e apoiar as comunidades costeiras na adaptag¢ao as condigdes

climaticas em mudanga.
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1. Introduction

1.1. Context

This thesis was conducted within the framework of the DeSIRA project, a major
initiative aimed at improving the sustainably of rice production, preserving mangrove
ecosystems, and enhancing the livelihoods of local communities in Guinea-Bissau.
Funded by the EU DeSIRA program, a key instrument supporting agricultural research
for development (R4D) in the agricultural innovation, the project holds relevance in
Guinea-Bissau, where rice production plays a vital role in food security and rural
development. The program's financial and institutional support was essential in enabling
a research agenda that adopted a problem-solving and participatory approaches, and

action-research methodologies.

The PhD research design was developed over several months of immersive
fieldwork, during which time the researcher lived and worked alongside farmers in their
fields. This close engagement enables an understanding of, and response to, the daily
challenges they face in mangrove swamp rice cultivation, a cropping system that is facing
major salinity issues, exacerbated by climate change and social transformations that

reduce labor availability.

Guinea-Bissau (GB), a small country in West Africa, relies heavily on rice
production to ensure the food security, feed its population and balance the economy.
There are three main rice production systems in the country: Mangrove Swamp Rice
(MSR), Upland (slash-and-burn), and inland valley (lowland freshwater swamp).
Additionally, a small area is cultivated under irrigated conditions (Ministry of Natural

Resources and Environment, 2006). Rice is the staple food for most of the population’,
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with an annual per capita consumption estimated ranging from 91 kg to 136.9 kg

(Balasubramanian et al., 2007; Fofana et al., 2014).

Mangrove swamp rice is a distinctive rainfed cropping system that relies
exclusively on rainfall both to meet crop water requirements and to leach salts from the
rootzone (Ecoutin et al., 1999; Espirito-Santo, 1949; Schwarz, 1993; Temudo, 2011). It
originates from the slashing of mangrove trees and the construction of dykes to create
plots (e.g., Temudo & Cabral, 2017). Thus, it represents the primary driver of mangrove
deforestation in Guinea-Bissau (Lourengo et al., 2009; Temudo & Cabral, 2017). Among
the West African countries where mangrove swamp rice cultivation is practiced
(approximately 200 000 ha), Guinea-Bissau has the largest area occupied (approximately
102 100 ha) by this cropping system (Adefurin & Zwart, 2016; Cormier-Salem, 1999;

Temudo, 2011).

This unique agri-fish-livestock farming system relies on the ability to mobilize
specialized knowledge, including the construction and maintenance of dikes and dams,
water management, controlling of soil fertility and toxicity, selecting appropriate rice
varieties, and the availability of substantial labor at key moments in the agricultural cycle.
Labor-intensive tasks include clearing the mangrove, constructing dikes and canals,
desalinating soil, and preparing it for sowing the rise using a long wooden plow tipped

with an iron edge (Temudo, 2011; Van Ghent & Ukkerman, 1993).

This cropping system requires no additional inputs beyond the use of appropriate
seeds. However, in some sites pesticides are occasionally applied. Fertilization and weed
control are assured through plowing, by cattle roaming while pasturing the rice stubble,
as most mangrove swamp rice farmers are also herders, and, until recently, through the

regular tidal flooding of the lower fields with brackish sea water during the dry season.
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However, this sustainable balance has been disrupted by climate change, which has
compromised the natural flooding regime. This has resulted in an increased toxicity of
acid-sulfate soils, which are transformed under aerobic soil conditions. Proper water and
soil management has thus become critical to maintaining the sustainability of rice
production (Fofana et al., 2014; Mendes & Fragoso, 2023), high concentration of soluble
salts in the soil solution directly affects plant growth and productivity

(https://www.youtube.com/shorts/UH4SErYaY_ U).

1.2. Salinity effect in soil and rice yield

High soil salinity typically leads to osmotic stress in plants, which hampers water
uptake, increases ion toxicity, and causes imbalances in the accumulation of cations in
the plant. As soil salinity reduces the available water for plants, more energy and
assimilates are required to sustain water and nutrients uptake. In response to water stress,
plants often close their stomata to limit transpiration, which in turn reduces CO>
exchanges and photosynthetic activity (Agurla et al., 2018; Bazrafshan et al., 2020).
Furthermore, evapotranspiration exacerbates this problem by drawing cations from

deeper to upper layers near the rhizosphere, intensifying salinity.

The cations K, Mg®, Ca?*, and Na* are the main nutrients involved in the osmotic
effect in soil and plant but the problem begins when monocations like Na* increase the
concentration in soils (Kronzucker et al., 2013; Sparks, 2003a). In clay particles, it can
interchange space with essential nutrients by plants (K, Mg*?, Ca*, Zn™, and others)
between the negative clay charge and soil solution, in other words, clay particles could
be filled by Na* and the other nutrient pass to the soil solution (Sparks, 2003b). It
increases the possibility of losses by leaching and nutrient deposition to a deep soil

horizon. Then, the combined effect of high temperature, low relative humidity, salt
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presence, and crop transpiration increases the water requirement in the field. Likewise,
external cation such as Na" in high concentration may perhaps increase antagonism with
K*,Mg", Ca", Zn", and this effect adds to another nutritional problem in crops. Therefore,
plants spend energy on water uptake for physiological function, and the mass flow could
accumulate toxicity ions in intercellular space, increase the nutriment competition, create
plant toxicity, and reduce yield. In synthesis, it causes nutrients deficiency in crops, soil

structure loss, and water availability reduction in salinity soil.

1.3. Water and modeling

Transient-state models have proven to be a valuable tool for simulating the dynamic
interactions of water and salts in the soil. These models account for temporal and spatial
variability, allowing for the assessment of salt accumulation processes over time, and
understanding and managing salinization in vulnerable agricultural systems (Ragab,
2002; Simtnek et al., 2016; van Dam et al., 2008). Several models are included in this
group such as Hydrus -1D, - 2D - 3D, Drainmod, RZWQM?2, RZWQM2, SWAT,
SWATRE, Modflow and SWAP (Anugrah et al., 2020; Dokoohaki et al., 2016;
Middleton et al., 1992; Shelia et al., 2018; Singh, 2021; Van de Craats et al., 2020).
Simpler models, such as steady-state approaches, can also be used. However, they present
limitations, as they assume minimal variation in salt concentrations over time and space
within a field. This assumption can lead to inaccuracies in soil water balance calculations,
particularly in dynamic environments like coastal rice systems where salinity levels

fluctuate significantly (Corwin, 2021; Letey and Feng, 2007).

On the other hand, there are simulation models used to assess the impacts of salinity
and water stress on crop yield (e.g. SIMDualKc model, (Rosa et al., 2016)). Several

studies have employed mechanistic models capable of estimating biomass and crop
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yields, which also serve as valuable tools for evaluating irrigation strategies and crop
management practices. These models are very demanding in terms of parameterization
and data, particularly on soil hydraulic properties, crop and nutrients data. Several models

are included in this group such as SALTMOD WOFOST and AquaCrop.

1.4. Agricultural Resilience to Salinization and Migration

Climate variability exacerbated by clime change poses an increasing threat to the
sustainability of mangrove swamp rice (MSR) cultivation. Rising sea levels and
intensified tidal surges cause seawater intrusion, leading to an increase of soil salinization
and acidification, which reduces rice yields. Altered rainfall patterns, characterized by
shorter, more intense rainy seasons, disrupt traditional water management, exacerbating
soil degradation. Labor shortages due to youth migration hinder the maintenance of
protective dikes, further compromising cultivation. Mangrove degradation, often driven
by economic pressures, reduces natural coastal protection and increases vulnerability to
erosion and storm surges. These combined factors threaten food security and the
livelihoods of coastal communities that depend on MSR. Climate change, therefore, poses

a critical threat to MSR sustainability in West Africa, particularly in Guinea-Bissau.

Further research on water and soil management in mangrove swamp rice
production, MSRP, is essential to enhance the resilience of this traditional farming system
and to provide more effective support for local farmers. Strengthening scientific
knowledge in this domain does not only contribute to mitigating the impacts of climate
change but also help safeguard food security and the sustainable use of natural resources

in Guinea-Bissau’s coastal regions.
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2. Research questions

This thesis investigates the physicochemical characteristics of soils, water and
land management, and rice crop development through case studies conducted in two
villages located in the northern and southern regions of Guinea-Bissau. The primary
objective is to enhance rice production by improving efficient water use under the specific
constraints of mangrove swamp rice systems. The research was carried out in real-world
agronomic context — farmers’ fields — and was guided by the following key research

questions:

v' What are the physicochemical properties of soil and the prevailing water conditions

in mangrove swamp rice fields in Guinea-Bissau?

v' What is the current knowledge regarding rice sowing in mangrove environments,

particularly in relation to climate variability, soil toxicity, and crop development?

v" How much water in needed to prevent yield loss due to salinity stress, and what
strategies can be adopted to rehabilitate soils that are currently unproductive or

showing reduced productivity?

v" Under which conditions can brackish water be allowed into the fields during the

dry and/or the rainy season without jeopardizing crop yields due to increased soil

salinity?
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To address these questions, the study began with a detailed characterization of the
farmers’ knowledge and local practices in the selected villages. Building on this
understanding, several models of salt and water transport in the soil were calibrated and
validated. The resulting insights were then used to design improved sowing strategies,

water management, and agronomic practices tailored to the local context.
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3. General and specific aims

The main objective of this thesis was to quantify the hydro-saline balances within
the mangrove swamp rice production system, with the aim of improving land, water and
crop management practices in Guinea-Bissau. By understanding of the dynamics of water
and salt in this traditional cropping system, the findings of this research also provide
practical recommendations for optimizing land, water, and crop production management

in Guinea-Bissau.

The specific aims of this thesis were as follows:

1) To develop a conceptual framework for understanding the constraints imposed by

the hydro-saline balance within the MSR production system (MSRPS);

2) To contribute to the biophysical characterization of the MSRPS in both the
northern and southern regions of Guinea-Bissau, with a focus on improving the
understanding of the soil-water—salinity interactions for more effective plots

management;

3) To characterize soil chemical composition, and develop a predictive model for
assessing spatial distribution, and propose targeted recommendations for soil

salinity management in MSR;

4) To develop tools for estimating the climate demand conditions, i.e. the reference

crop evapotranspiration (ET,) using the FAO Penman-Monteith equation, using
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)

6)

7

exclusively temperature data and reanalysis datasets, thereby enhancing water

management under data-scarce conditions;

To calibrate and validate the HYDRUS-1D model for simulating soil-water
dynamics and salt transport in both tidal plots (lower areas near the mangroves)

and associated upland mangrove plots (higher areas along the catena);

To compute the soil-water balance and evaluate the impact of soil-water

management on rice yields at each study site;

To evaluate the effects of changing groundwater dynamics and rainfall variability

on rice production.
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4. Thesis framework

This dissertation is structured around five scientific articles, developed in a
chronological sequence to progressively gather the data required to address each research
objective. In other words, the findings and insights from each article informed and
supported the development of the subsequent one, creating a coherent and cumulative
research trajectory. The research involved a combination of field and analytical
methodologies, including field reconnaissance, semi-structured interviews with farmers,
soil sampling and profile characterization, laboratory analysis of soil physical and
hydraulic properties, continuous monitoring of in-field sensors, rice growth observations,
weather monitoring, remote sensing, and data analysis. A comprehensive literature
review was also conducted, including books, national databases, peer-reviewed scientific
articles, academic thesis, and meta-analyses from reputable sources such as the World
Bank, the Food and Agriculture Organization of the United Nations (FAO), and official
data from the Government of Guinea-Bissau (GB), among others. This provided a
description of the baseline knowledge on the research topics to be addressed throughout

the thesis.

Soil samples and plant samples were collected throughout the three rice seasons.
These were analyzed and processed in three different laboratories: the Soil Laboratory of
the Agriculture Department of Guinea-Bissau, the Soil Physics and Hydrology
Laboratory at Wageningen University, and the Soil and Foliar Laboratory at the
University of Costa Rica. These laboratories were selected based on the availability of
specialized equipment and the suitability of each facility for carrying out specific

analyses. The soil laboratory of the Rural Engineering Department of the Ministry of

26



Agriculture in Bissau was used to develop the physical analysis of the collected soil

samples. In summary, the thesis is structured as follows:
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Figure 1.1. Structural framework of the thesis

Chapter 2, corresponding to the first scientific article, presents a comprehensive

literature review enriched with data information from institutional databases, interviews

with farmers, and field surveys. It also included site description along transects and

detailed fields observations, which enabled the identification of the key challenges related

to soil salinity in mangrove environments. The article offers an in-depth description of

the different rice production systems found in Guinea-Bissau, with a particular focus on
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the Mangrove Swamp Rice Production (MSRP) system. The study defines the structural
and functional characteristics of MSRP and explores the local classification of rice fields
(Bolanhas in Creole) into plots, highlighting their correlation with high-salinity areas. It
also provides a technical and visual characterization of the sites, supported by
photographic documentation of field plots, local rice varieties, and the vernacular
terminology used by farmers. This first article identifies and synthesizes the key
constraints limiting agricultural performance and rice productivity in Guinea-Bissau, thus

laying the groundwork for the subsequent chapters.

Chapter 3 (second article) focuses on the characterization of plots and bunds,
assessing the number of plots per unit area, their dimensions, and their influence on water
retention and soil moisture, with particular attention to the soil plasticity limits. A
comparative analysis was conducted between two villages, one located in the southern
region of the GB and the other in the northern region, based on the evaluation of the
impacts of the rainfall variability and the biophysical characteristics of each site on the
agricultural practices and land management strategies. The findings in this study highlight
the need to adapt farming practices to the spatial and temporal distribution of water,
particularly in terms of the timing of tillage operations. Water management was shown to
be more efficient in smaller plots, due to the reduced variability in waterlogging depth.
Finally, to optimize tillage operations and mitigate salinity-related issues, the use of
gravimetric moisture content and soil consistency mapping is recommended. Additionally
improving drainage infrastructure, conducting a comprehensive analysis of salt
composition, developing salinity distribution maps and establishing a hydro-saline
balance are key strategies for enhancing the sustainability of mangrove swamp rice

systems.
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Chapter 4, which corresponds to the third scientific article, examines the chemical
composition and spatial distribution of salts within the MSRP system at the field level.
The study was conducted in three case study villages and employed machine learning
techniques to generate high-resolution soil electrical conductivity maps (ECe) with a high
degree of accuracy. These maps allowed for the identification of hypersaline zones and
the assessment of salinity patterns in relation to land use and water management practices.
The article underscores the importance of understanding the interplay between
agricultural practices, water management, and the role of sodium in shaping soil salinity
and rice cultivation and productivity within the MSRP. It proposes targeted interventions
to enhance water distribution infrastructure and restore mangrove forests in currently
unproductive areas. It validates the findings from the first and second articles by
reinforcing the link between soil physicochemical properties and spatial salinity patterns.
Moreover, the study highlights the need for long-term monitoring to gain a deeper
understanding of water and salt dynamics in the soil to support the development of

sustainable and resilient rice production systems in mangrove environments.

Chapter 5, corresponding to the fourth scientific article, focuses on the estimation
of reference crop evapotranspiration (ET,) within the MSRP. ET, corresponds to climatic
demand conditions and is essential for estimating crop water use (ET¢) when the FAO
approach is used. It is therefore a mandatory input for many tools, such as soil water
balance and flux models such as HYDRUS-1D. This article provides a baseline estimate
that serves as a foundation for calculating crop evapotranspiration in the subsequent
article. The study explores alternative methods for estimating ET, using only temperature
data. The analysis includes a comparison of reanalysis datasets, namely AgERAS from
the Copernicus project and MERRA-2 from NASA, which differ in spatial resolution and

temporal consistency. This article delivers a key tool for estimating ET, in Guinea-Bissau
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and provides a viable alternative for regions with limited meteorological data. Its
relevance is particularly significant for institutions and stakeholders engaged in
improving water use efficiency and managing salinity in MSRP. Furthermore, it
highlights the necessity of refining global models to better suit tropical regions
characterized by high climatic variability, fostering more efficient and resilient

agricultural practices.

Chapter 6, corresponding to the fifth scientific article, presents a hydro-saline
balance analysis of the MSRP, modelling with the HYDRUS-1D the observed condition
and potential scenarios based on historical rainfall data. It integrates multiple data
sources, including the soil physicochemical characterization, biophysical parameters of
the rice fields, ET, estimates for calculating crop transpiration (ET.), and agronomic
information on rice varieties and yields. The hydro-saline modelling confirms earlier
findings regarding salt-free periods essential for rice production (Guei et al., 1997) while
also identifying critical constraints, particularly the systems dependence on rainfall to
maintain salinity within tolerable limits. The study proposes several management
strategies to address soil salinization, such as the identification and use of salt-tolerant
rice varieties adapted to local conditions, the improvement of drainage infrastructure, and
the implementation of long-term research programmed to assess salinity tolerance across
different environmental contexts in Guinea-Bissau. These recommendations aim to
support the development of sustainable rice production systems in mangrove
environments, enhancing the resilience of local agriculture in the face of climate

variability and soil degradation.
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Chapter 2

Mangrove swamp rice production system of Guinea
Bissau: Identification of main constraints
associated with soil salinity and rainfall variability

This chapter was published in Agronomy.

Garbanzo, G., Cameira, M., Paredes, P., 2024. The Mangrove Swamp Rice Production
System of Guinea Bissau: Identification of the Main Constraints Associated
with Soil Salinity and Rainfall Variability. Agronomy 14, 468.
https://doi.org/10.3390/agronomy 14030468

Keywords: Soil Salinity; West Africa; Tropical Polders;
Oryza spp; Agronomic Practices; Water Management;
Typologies of Paddies; Associated Mangrove; Tidal
Mangrove.
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1. Abstract

Mangrove swamp rice production (MSRP) stands for rice cultivation in former mangrove
soils that were anthropogenically modified for food production. They utilize the largest
possible storage of freshwater to desalinate the soils and make them productive. However,
temporal variability in rainfall patterns causes loss of efficiency in production, impacting
crop growth and reducing productivity. To improve MSRP in the country, it is necessary
to identify the primary constraints associated with salinity, enhancing, and maximizing
freshwater storage efficiency and water productivity. This study provides a general
description of the MSRP system in both the northern and southern regions of Guinea-
Bissau aiming at the identification of the main water management limitations. The
description involves the use of typologies and the identification of zones within the
paddies with specific characteristics. Furthermore, this review includes an analysis of the
physicochemical characteristics of soils related to salinity issues, a description of
agronomic management, rice varieties and the significance of dikes and bunds
management for improving mangrove swamp rice water management. It shows how the
MSRPS is characterized by dynamism and complexity, involves a wide range of
constraints associated with salinity features, cultural influences, and microclimatic

conditions that are subject to temporal variations.
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2. Introduction

Rice (Oryza sativa L. and O. glaberrima) is one of the most important staple foods
on the Asian, African, and American continents. Global rice production is estimated at
approximately 540 million tons over the past decade (Food and Agriculture Organization

of the United Nations., 2018; Krachmer et al., 2017).

The rice crop grows primarily in the humid and seasonally dry tropics of the world,
in most cases with irrigation or freshwater harvesting systems (Mallareddy et al., 2023).
Flood irrigation is the most widely used irrigation method for rice cultivation worldwide
(Nie and Peng, 2017). Rice paddy fields are usually permanently flooded, but with the
aim of reducing water use, several flooding variants have been introduced such as dry
seeding (Alberto et al., 2014; Diaz et al., 2019), anticipated cut-off, and intermittent water
application (Oue and Laban, 2020). Due to the increase of water shortage and scarcity
aerobic rice is being implemented using sprinkler or surface irrigation (Choudhury et al.,

2013; Clerget et al., 2014; Fukai and Mitchell, 2022; Moratiel and Martinez-Cob, 2013).

Most rice cultivars show remarkable adaptability to thrive in flooded agricultural
systems (Chauhan et al., 2017), especially in regions characterized by abundant sunlight
and access to freshwater resources (Mallareddy et al., 2023). Recent plant breeding led to
the development of modern cultivars adapted to aerobic conditions (Farooq et al., 2023).
Rice productivity primarily depends on soil fertility, climatic factors, efficient water
management, agronomic practices, weed control, and the adaptability of rice varieties
(Bos et al., 2006; Krachmer et al., 2017; Mallareddy et al., 2023). It has been reported
that rice productivity can reach values of 10 Mg ha™! under optimal climatic and
agronomic conditions and with the support of agrochemical inputs (Chauhan et al., 2017;
van Oort and Zwart, 2018), but climate change calls for the adoption of agroecological

pathways especially among smallholders living in marginal regions.
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In the north-western regions of Africa, upland (slash-and-burn), inland lowland
swamp and mangrove swamp rice production can be found, all of which are rainfed. It is
estimated that African rice production systems began 3000 to 2000 years ago (Da Silva,
1993; W Hawthorne, 2001; Linares, 2002; Penot, 1994). Reports from overseas travelers
during early colonization (between the years 1400 - 1600) indicated that the population
from countries such as Senegal, Gambia, Guinea-Bissau, Guinea-Conakry and Sierra
Leone practiced rice cultivation (Kyle, 2015; Lea, 1993; Teeken et al., 2012). This implies
that the indigenous population developed technological knowledge for rice production in
different agroecological conditions, and domesticated wild ancestors (Oryza glaberrima)
and adapted exogenously introduced rice varieties (O. sativa) for these different
conditions over many centuries (Linares, 2002). In a context of high agro-ecological and
cultural diversity, limited labor availability and access to agrochemicals, and a strong
tradition of self-sufficiency farmers’ rice varieties in West Africa are the result of a long

breeding process shaped by both ecological and social factors (Nuijten et al., 2013, 2009).

The yields of farmers’ varieties therefore vary greatly depending on location, year,
and production system, but as would be expected in the marginal regions where rice is
grown without external inputs and/or irrigation, they often outperform the so-called high-
yielding or “modern" varieties because they are well adapted to those harsh conditions
(Teeken et al., 2012; Temudo, 2011). In addition, it was reported that local farmers
selected rice varieties based on several characteristics besides productivity, including
fragrance, taste, digestion time, swelling during cooking, ease of harvesting and threshing

(Teeken and Temudo, 2021; Temudo, 1998).

Guinea-Bissau (GB) is a small West African country (Figure 1.1) with a population
of approximately two million people and an area of 37 500 square kilometers (Cooper

and McConkey, 2005; Rohrig et al., 2021; The Republic of Guinea-Bissau., 2018), having
34



borders with Senegal to the north and Guinea-Conakry to the south. The country has
extensive mangrove forests that extend across the entire national territory from south to
north (Cooper and McConkey, 2005), and a total of 88 islands, 20 of which are inhabited
(Fernandes, 2012; Secretary of State for Environment and Tourism., 2014). In the
mangrove regions, there are large areas of deforested land that are used for rice
production. There are also upland areas where rainfed rice, vegetables, fruit trees (namely
cashews) are grown (Cooper and McConkey, 2005; Dias et al., 2022; The Republic of

Guinea-Bissau., 2018).

Rice production is crucial to GB as it forms the basis of the population's diet. There
are three rice production systems in the country: mangrove swamp rice, upland (slash-
and-burn) rice and lowland swamp rice (rainfed and irrigated) (Ministry of Natural
Resources and Environment., 2006). The annual per capita, rice consumption is estimated
to be around 91 - 136.9 kg (Balasubramanian et al., 2007; Fofana et al., 2014; Soullier et
al., 2020). Nevertheless, daily rice consumption can vary significantly, ranging from 400
to 700 grams, depending on the location (rural or urban), the time of the year (dry vs.
rainy season; after harvest vs. hunger period) and the changing eating habits (1 to 3 meals
per day; inclusion or not in the diet of other cereals and root crops) of different ethnic
groups (e.g., Balanta, Manjaco, Felupe, Baiote, Pepel versus Fula and Mandinga) and

households.
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Figure 2.1. Location of Guinea-Bissau and main regions (Cacheu = A, Oio = B, Bafata

= C, Quinara = D, Tombali = E) where swamp rice is cropped.

The mangrove swamp rice production system (MSRPS) is governed by soil salt
concentration, and in some cases soil acidity, as well as the need for freshwater
availability for plants. MSRPS belongs to a rainfed wetland rice ecosystem, specifically
within the sub-ecosystems that are prone to drought and flooding; thus, highly vulnerable
to rainfall patterns, needing water harvesting in the plots to ensure rice production
(Andriesse and Fresco, 1991; Balasubramanian et al., 2007). Rice sowing coincides with
the start of the rainy season, when plots typically have low salt concentrations that favor
the growth of salt-tolerant rice varieties (Penot, 1994; Temudo, 1998). The decision of
when to sow is related with the timing that salinity in the plots is low. Decision making
is based on traditional knowledge without the support of agronomic tools and has become
more difficult due to increased rainfall variability (distribution and quantity) (Cossa,
2023). The timing of sowing has become unreliable, especially in the northern regions

where rainfall is already scarce. To date, no studies on the dynamics of salt and water
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movement in the soil have been carried out for the MSRPS. The lack of sufficient
knowledge about rainfall timings and salts dynamics often leads to inadequate crop
development due to problems such as water shortages, toxicity and acidity, which in some
cases leads to complete crop loss (Sylla, 1994). Furthermore, MSRP is strongly
influenced by spring tides, which often lead to saltwater intrusion (Mendes and Fragoso,

2023), and a partial or total loss of rice production.

The MSRPS is dynamic and constantly changing due to its vulnerability to rainfall
variability, that modifies freshwater storage, and forces annual/seasonal adaptation of
agronomic practices (Andrieu, 2018; Temudo et al., 2020), through the active
improvisation/innovation of farmers (Martiarena and Temudo, 2023). Consequently,
appropriate water management is essential to support farmers in reducing the high salinity

of the soils in the plots on an annual basis.

Nowadays, temporal and spatial variability of rainfall in the country have become
increasingly uncertain due to climate change (Dore, 2005; Idris et al., 2022; Nuijten et
al., 2013). It is well documented that certain regions of the world are more vulnerable to
climate change, and GB is one such vulnerable country (Martiarena and Temudo, 2023;
Mendes and Fragoso, 2023; Sousa et al.,, 2023; van Oort and Zwart, 2018). This
susceptibility arises from its location in a transition zone between the African tropics and
the Sahara Desert and its low-lying topography. The country’s agricultural production is
highly dependent on rainfall, accounting for approximately 90% of its output (Cabral,
1954a; World Bank Group., 2019). Long-time average annual rainfall ranges from 1200

to 5000 mm depending on the region; further information will be provided in Section 5.

The temporal variability of rainfall has a potential influence on the food security of

the population producing rice for subsistence purposes. Currently, rainfall is concentrated
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in a shorter period, limiting the production window for MSRP (Mendes and Fragoso,
2023). Additionally, heavy rainfall over a short period can lead to the destruction of
MSRP infrastructures (dams and bunds) resulting in the loss of the production and further
productivity of the rice fields. This issue will be further dealt with in Section 5. Another
constraint to agricultural production in GB is the lack of necessary infrastructures, such
as deep wells and dams, to support irrigation (Machado and Serralheiro, 2017;

Mallareddy et al., 2023; The Republic of Guinea-Bissau., 2018).

The global aim of the present review article is to provide a conceptual framework
for understanding the hydric-saline balance constraints of the MSRPS in GB. A
systematic review could not be carried out due to the small number of available articles
on the subject, and the need to include old (since the 1950s) and grey literature (e.g.
books, governmental and project reports) that was not digitally accessible through the
search engines (Agris, Scopus, ScienceDirect, Springer, Google academic) used in this
review. The meteorological information and rice yield datasets were accessed from the
agricultural and meteorological ministries of the country but have variable accuracy. The
documents used were in various languages (English, French, Portuguese, and Spanish)
along with the characterization of the sites in the Kriol dialect. Additionally, to the
literature review, this article also comprised some empirical research, which included
transects conducted with farmers with on-site descriptions of the paddies’ diverse
agroecologies, on-farm trials, soil sampling and analysis, biophysical characterization,
and interviews to farmers about endogenous knowledge and technological innovation. In
sum, the comprehensive research covers various essential aspects: (a) biophysical
description of the MSRPS; (b) agronomic management of the MSRPS (c) key constraints,
such as salinity and rainfall variability, and their impacts on water availability and rice

yield; and (d) future research needs.
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3. Rice production in Guinea Bissau

3.1. Rice production systems in GB
Rice in GB is produced in several ecologies with diverse techniques of cultivation.
The less productive rice system is performed in the uplands on former forests or savanna
woodlands after slash-and-burn, and less frequently under palm oil groves (Figure 2.2).
The degree of crop association is quite variable as well as the length of the crop-fallow
periods (Temudo et al., 2015; Temudo and Santos, 2017). Upland rice is known in GB as
“N’pam-pam” or “arroz de lugar” (in Kriol language) and is a rainfed production system.
The sowing of N ’pam-pam is usually carried out after the first rains of the year, as the
production period is limited by rainfall and the soil water availability (Medina, 2008).
Within the total land area used for rice cultivation (14.7% of the country agricultural
area), upland rice accounted for 37% only (Ferreira, 1968; The Republic of Guinea-
Bissau., 2018), while MSRP and lowland freshwater production (“Lalas” in Kriol)
accounted for the remaining 63% (The Republic of Guinea-Bissau., 2018). However, the
expansion of cash crop cultivation areas, particularly cashew, in recent years has led to a

drastic reduction in the area occupied by the upland rice system (Temudo et al., 2015).
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Figure 2.2. Rice production systems (RPS) of Guinea-Bissau.

The other rice production systems, in contrast, are carried out in the lowlands and
include two different traditional systems of rice swamp cultivation called in Kriol
“bolanha doce” (inland freshwater swamp fields) and “bolanha salgada” (mangrove
swamp fields). The local term “bolanha’ refers to the fact that rice is cultivated with a
permanent depth of water (permanent flooded paddies) until or almost until the end of the
rice cycle. The freshwater swamps where rice is cultivated are located in inland valleys
where there is a shallow water table or an impermeable soil layer that allows water storage
and thus assures fresh-water harvest (Marzouk, 1991). This system is characteristic of
North-Eastern GB and is essentially performed by women belonging to the Fula and
Mandinga ethnic groups, who plow with a hoe after burning the grasslands and are not
used to build dikes (Temudo, 1998). In the other regions of the country (Cacheu, Oio,
Quinara and Tombali), men from other ethnic groups (such as the Balanta, the Manjaco,
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the Felupe, the Nalu and the Beafada) can also produce freshwater swamp rice in wet
savannah grasslands (/alas” in Kriol) but using a long plow (“radi” in Kriol) with which
they build dikes, ridges and furrows (Mota, 1954) improving fresh water management.
Freshwater rice production systems do not present salinity constraints and fields are
usually far from mangrove forests. This rice production system accounts for
approximately 10% of the 63% of rice cultivation area in lowlands and saltwater plots
(The Republic of Guinea-Bissau., 2018). In some areas of the Bafata region of Eastern
GB, supplement irrigation is used with water being pumped from the river or using

gravity-based drainage systems.

3.2. MSRP and typologies of fields

In the coastal areas, near the mangrove forests, we can find the “bolanha salgada”
rice paddies (MSR fields) (Figure 2.3, 2.4). This system is characterized by the former
presence of mangrove forests, which over the years have been invaded by the tides in part
or the whole area of the rice fields. Farmers slash the mangroves, build the main dike to
prevent saltwater intrusion and create plots of land for freshwater storage by dividing the
area with bunds, which have been mentioned in previous literature as secondary dikes
(Linares, 1981). Coastal ethnic groups use these locations due to their high rice
productivity compared to the uplands and inland swamp valleys. At the top of the weak
slope that links the villages to the mangroves, there may exist a grassland area (“/ala’ in
Kriol) where rainwater accumulates naturally due to the existence of a depression. As
previously mentioned, farmers can use their MSRPS techniques to create a “bolanha
doce” (freshwater swamp rice fields) associated with the mangrove rice swamp fields

which have higher fertility, less weeds, but also salinity issues.
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Figure 2.3. Some characteristics of the “bolanhas” of mangrove swamp rice system (MSRPS) of Guinea-Bissau.
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The rice fields which result from the destruction of the mangroves and that are
periodically invaded by the tides are called in the literature tidal mangrove fields (bolanha
de tarrafe in Kriol), while the upper fields where only the brackish groundwater induces
soil salinity during the dry season are called associated mangroves (bolanha de metadi in
Kriol meaning middle swamp fields) (Figure 2.3). This part of the rice fields has generally
weed species with low salinity tolerance, and a wide diversity of grasses from the Poaceae

family during the rainy season (Merkohasanaj et al., 2022).

At the upper end of the associated mangroves’ area are the old swamp fields
(“bolanha belhu”); these can be abandoned due to low fertility or be cultivated with short
cycle upland rice varieties for the hungry season when there is land scarcity (namely in
Oio among the Balanta ethnic group). Farmers frequently abandon these plots because
their productivity is very low, and they do not provide sufficient returns on labor
investments. The creation of new plots is triggered by decreasing fertility and, in the long-
term, to the occurrence of a desertification process (i.e. degraded land resources)
(Andreetta et al., 2016). Evidence of desertification problems has long been observed in
the Casamance region of Senegal (Linares, 1981), which borders the GB’s Cacheu region
(Figure 2.1), where areas of low fertility and high salinity predominate. This highlights
an inherent sustainability problem as producers fail to replenish nutrients depleted by crop
growth through the incorporation of weeds and rice stubs during plowing. As farmers
strive to sustainably meet their families' rice self-sufficiency production needs, they are
compelled to create new plots where they can achieve higher rice yields. Then, within
each category, farmers from the northern, central, and southern regions divide the plots

based on specific characteristics that increase their fertility and rice yields.
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A possible cause of desertification in the mangrove swamp rice abandoned fields
(“bolanha behlu™), is sodicity (Na® accumulation) and loss of soil organic carbon
concentration (Andreetta et al., 2016). Some authors have suggested that the osmotic
effect observed in plants is due to a combination of salinity, iron toxicity, and soil
acidification in hydromorphic soils of GB (Ministry of Natural Resources and
Environment., 2006; Secretary of State for Environment and Tourism., 2014; Sylla, 1994;
Sylla et al., 1995; The Republic of Guinea-Bissau., 2018; van Oort, 2018). Nevertheless,
this is not sufficiently proven as the literature does not provide data demonstrating
concentration of sulfur (S) and Iron (Fe) in the first horizon of the plots’ soil. Some studies
conducted specifically in mangrove soils indicate the presence of acidity caused by
sulfuric acids, but this information refers specifically to soils previously covered by
mangroves (D’Amico et al., 2023; Naidoo, 2023; Oosterbaan and Vos, 1980; Sylla, 1994;
van Oort, 2018). On this basis, it is possible that soils with significant concentrations of
toxicity (such as Na and Fe) and acidity (SO3) occur predominantly in new mangrove
fields (bolanha novo in Kriol) and to a lesser extent in older fields of the tidal mangrove
area (bolanha de tarrafe in Kriol). This is due to their proximity to soils still covered with

mangroves and their status as newly created sites for MSRP.

The scientific categories of tidal mangrove’s and associated mangrove’s fields are
linked to the relative influence of the tides and of the brackish groundwater on rice
production (Oosterbaan and Vos, 1980; Penot, 1992; Sylla et al., 1995). Likewise,
Guinea-Bissau farmers categorize tidal mangroves’ fields in different sub-classes based
on their specific age, function, fertility level (empirically assessed), and location in
relation to the mangroves and the village (Figure 2.3, 2.4). Although all tidal mangrove
fields could be called “bolanhas de Tarrafe”, at present farmers only apply this concept

to the high fertile lower fields near to the main dike and the mangroves where high
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concentrations of salts can be found. The recently opened tidal fields of “bolanhas de
Tarrafe” where mangrove roots and stubs can still be found and thus cannot be plowed,
are called new swamp fields (“bolanha novo” in Kriol). In these plots, there are generally
no concerns about soil acidity, due to sulfuric acids, in the first soil horizons (D’Amico
etal., 2023). This is attributed to the extensive oxidation process in the soil profile, which
leads to the formation of pyrite, resulting in the release of sulfuric acid and H' through

the oxidation of Fe*? (details are provided in Section 4.2).

Additionally, over time, leaching of anions and cations to deeper soil horizons
occurs (Sylla et al., 1995; Ukpong, 1995). The new swamp fields (“bolanha novo”) are
the newest areas where farmers start planting (or sowing directly high salt tolerant rice
varieties) 3 to 5 years after slashing the mangroves and building a main dike; this period
is needed for rainfall to leach salts, thus naturally reducing salinity and toxicity caused by
seawater cations. These are the most fertile locations among all plots of a paddies
(Merkohasanaj et al., 2022). However, these are the only sites that suffer from acidity
problems caused by sulfuric acid due to their limited exposure to oxygen and leaching of
cations and anions (D’ Amico et al., 2023). The start of ploughing of the new bolanha also
depends upon the dominant mangrove species, as roots constituted with physical barriers,
mainly the ones of Aviccenia germinans and Languncularia sp. that take longer to rotten

(Cossa, 2023).

There are two less common sub-categories of tidal mangroves, primarily used
among Felupe and Baiote ethnic groups in some northern islands of GB (Figure 2.3, 2.4),
known as “Nhatabas”, and “Ouriques de pisca”. The “Nhatabas” (called “ilhas” by the
Balanta) are tidal mangrove fields (“bolanhas de Tarrafe”) in terms of the soil
physicochemical properties, located in remote islands, requiring the use of canoes for the

transport of both workers and the rice harvest (Temudo and Cabral, 2023). Finally, the
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fishing dikes (“ouriques de pisca” in Kriol) are ponds surrounded by dikes, reserved
exclusively for the reproduction and growth of fish (Van der Knaap, 2019) (although they
might have been former rice plots). Farmers facilitate the entry of saltwater, shrimps, and
fish into these ponds by opening drainage pipes made from palm trunks (Cooper and

McConkey, 2005; Oosterbaan and Vos, 1980).
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Figure 2.4. Plots of mangrove swamp rice production system in mangrove of Elalab, Guinea-Bissau. A) Village (Tabanca), B) fish production
plot in the Felupe/Baiote system (Orike de pisca), C) Associated mangrove (bolanha doce), D) Tidal mangrove (bolanha salgada),
E) New mangrove plots (bolanha novo), F) Mangroves (Tarrafe).
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In some villages there is also an “associated terrace” (cabe¢a de bolanha in Kriol,
meaning head of the rice swamp field) covered by wet or dry grassland. In the upland
savannah woodlands/grasslands surrounding the households, where cattle, pigs and goats
roam, some farmers sow the rice nurseries at the beginning of the rainy season. Farmers
can also use the mangrove fields to create nurseries, as in the south of GB, or more seldom
perform direct sowing as in the southern GB (Balanta ethnic group of the Cafine region

and the Felupe/Baiote ethnic groups of the Cacheu region).

3.3. Areas and yields

The official international statistics (Food and Agriculture Organization of the
United Nations, 2023; The World Bank, 2023) show that in the last 60 years, total rice
production in GB has been on an upward trend (Figure 2.5). However, these statistics are
based upon rough estimates for the entire country. According to FAO and the World Bank
estimates (Food and Agriculture Organization of the United Nations, 2023; The World
Bank, 2023), rice production was lower in the 60s and 70s than in the last decade
(Koehring, 1980). In the last 10 years, the average total area under rice cultivation in the
country was 112 564 ha, with an annual average production of 180 749 Mg of rice. This
is in line with the estimates of the African Union, which currently forecasts an
approximate production of 182 544 Mg for the period 2010-2020 (African Union., 2023).
A similar increasing trend can be observed in relation to the rice harvested area (Food and
Agriculture Organization of the United Nations, 2023; The World Bank, 2023). This
indicates an active and strong expansion of rice production areas, despite the continuing
dependence on rice imports (Food and Agriculture Organization of the United Nations,
2023). This is likely due to a combination of factors, ranging from the active rebuilding

of mangrove swamp rice fields’ infrastructures after the liberation war (1963-1974) and
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the expansion of new planting areas with higher soil fertility and water availability

(Temudo and Cabral, 2017; Vasconcelos et al., 2015).
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Figure 2.5. Smoothed conditional means plots of the harvested area (ha) and national
production (Mg) of rice from 1961 to 2022 (Food and Agriculture Organization
of the United Nations, 2023).

The rice yields in GB exhibit considerable temporal and spatial variability, the latter
depending on the region and the rice production system. Table 2.1 shows the rice yield
reported in several studies about rice cropped in upland locations and MSRP fields. The
results show that the MSRPS outperforms the upland rice in all studies, with differences
ranging from 15% to 60%. These differences indicate that the yield of the diverse rice
production systems in GB is extremely different, largely due to the strong differences in

agro-ecological characteristics between upland, inland valleys, and MSRP fields.
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3.4. Rice crop species and varieties

Two species of rice plants have been identified in GB since colonial times, Oryza
glaberrima and O. sativa. The first is a species native to Africa, where farmers have been
domesticating and selecting varieties for 2000 and 3000 years (Cormier-Salem, 1999; Da
Silva, 1993; W Hawthorne, 2001; Linares, 2002). On the contrary, O. sativa is a species
native to Asia and was introduced by the Portuguese and/or the Arabs during the colonial
period in the 17" century (Linares, 2002; Teeken et al., 2012). These species have
significant advantages and disadvantages in terms of their adaptability to the MSRPS
(Table 2.2). The main reasons for their adoption are their productivity (sensu lato), their
adaptation to social and cultural factors, and their tolerance to biotic and abiotic factors
(Kyle, 2015; Temudo, 2011). Over the years, farmers in GB have selected varieties from

both species with the most suitable organoleptic and agronomic characteristics.
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Table 2.1. Literature reported rice yields in upland and mangrove swamp system

(MSRPS).
: 1
Year/System Up?:rzd rangesl\(f Sglil; S) References
1947 - 2060 - 3000 (Castro, 1950)
1948 — 1620 - 2680 (Castro, 1950)
1949 - 1040 - 1960 (Castro, 1950)
1953 300 - 1800 - 2000 (Ferreira, 1968)
600
1968 1098 1832 (Ferreira, 1968)
1970 600 - 1000 - 3000 (WALTER Hawthorne, 2001)
800
1982 - 1900 (Seidi, 1998)
1983 - 2700 (Seidi, 1998)
1986 270 - 1020 - 3750 (Van Ghent and Ukkerman, 1993)
950
1987 - 1305 - 2700 (Rodrigues and Carrapigo, 1990)
1988 - 1714 - 3033 (Rodrigues and Carrapigo, 1990)
1990 400 - - (Cormier-Salem, 1999)
600
1991 300 - 600 -1500 (Da Silva, 1993)
600
1994 - 1960 (Seidi, 1998)
1995 - 2800 (Adesina and Seidi, 1995)
1999 500 1500 - 4000 (Cormier-Salem, 1999)
2001 1000 3000 (Chauhan et al., 2017)
2008 400 - - (Kyle, 2015)
800
2008 400 - - (Kyle, 2015)
800
2010 - 1584 (African Union., 2023)
2014 - 1700 - 2600 (Secretary of State for Environment and
Tourism., 2014)
2015 - 1120 — 2870 (Tesio et al., 2021)
2017 - 1000 (Chauhan et al., 2017)
2021 - 1600 (Rohrig et al., 2021)
2023 - 1180 - 1910 (Cossa, 2023)

A significant number of rice varieties have been reported in GB over the last 70

years (Table 2.3). These varieties possess genetic characteristics of the O. sativa and O.

glaberrima species, and even of inter-specific hybrids (J. Espirito-Santo, 1949). The

literature reports a total of 54 varieties (both farmers’ varieties and “improved” ones)

identified in MSRP (Table 2.3) over the last 12 years (Teeken et al., 2012; Temudo, 2011;
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Tesio et al., 2021). There is a wealth of information that still needs to be thoroughly

explored to accurately determine whether different names correspond to the same rice

varieties and the same name can correspond to different varieties. This is a challenge the

country faces due to its wide diversity of ethnic groups with completely different

languages, making it difficult to properly identify a variety.

Table 2.2. Characteristics of Oryza glaberrima and Oryza sativa used for rice production

system in mangrove reported in West Africa.

Species History and adaptability Phenotypic Genotypic
characteristics characteristics
* Short and
. . . * Small grain medium cycle
* Indigenous Aftrican rice * Tolerance to
) ) * Dark seed color .
* Wild ancestor O. Brevilugata « Pear-shaped orains diseases and
* Domesticated 2000 — 3000 years . .p 8 . pests
* Grain with red, olive to )
ago * Tolerance to iron
) black seedcoat ..
* Dryland and wetland rice . _ toxicity
cultivation " Straight panicles * Tolerance to
Oryza glaberrima * Panicles with simple

* High adaptability in water depth
fluctuations
* Some varieties have high salinity

branches
* Short-rounded ligules
* Wide leaves

acidity
e Tolerance to low
fertility soils

Oryza sativa

References

tolerance . * Salt or drought
. . * Seeds scatters easily

* Some varieties have high draught S tolerance

tolerance * The grain is brittle Good

. . *Goo
* Difficult to mill .
acclimatization.

* Asiatic origins
* Two strains (O. japonica, O.

indica) * Bigger grains * Short, medium

* Introduced early 1600s by
Portuguese and/or Arabs

* Dryland and wetland rice
cultivation

* Lower tolerance in water depth
fluctuations

* Slowly compete with weeds

* Some varieties have high and low

salinity tolerance

* General white seed color

* Pear shaped grains

* Panicles are not upright

* Pointed ligules

* Panicles bend after
flowering and have more
ramifications

and long cycles

* More susceptible
to diseases and
pests

* Scatter lees seed
on the ground

(Adesina and Seidi, 1995; Cormier-Salem, 1999; W Hawthorne, 2001; Linares,

2002, 1981; Teeken et al., 2012)
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The wide diversity of rice varieties in GB (Table 2.3), are continually being selected
based on farmers’ changing needs over time. The vast majority of farmers do not carry
out mass selection before harvesting the grain to be used as seed for the next cropping
season, and farmers permanently access and adopt seeds of new varieties through
informal channels. Furthermore, natural interspecific hybrids were found in smallholders’
fields as a result of spontaneous cross pollination (Nuijten et al., 2009). Varieties are
usually adopted by farmers based on agroclimatic conditions (soil physico-chemical
conditions, climate), post-harvest quality and nutritional considerations (Penot, 1995;
Temudo, 2011, 1998). Various local criteria are used when selecting rice varieties
including: (1) nutritional quality and post-harvest characteristics (duration of digestion
time, swelling capacity during cooking, taste, difficulty in threshing, processing
characteristics (de-husking), time required for a given volume of rice to be fully
consumed) and; (b) both phenotypic and genotypic traits of the variety (growth cycle,
yields, salt tolerance, plant height, tillering capacity, flood tolerance, drought tolerance,
susceptibility to lodging and shedding, susceptibility to pests and diseases) (Temudo,
2011, 1998). In most villages these two main sets of criteria are used, with the first
category having more weight than the second. Furthermore, these criteria may vary
depending on the topographical characteristics of the plots and the cultural practices in

different villages across the country

53



Table 2.3. Rice varieties’ common names reported in the literature for Guinea-Bissau since 1948 to 2023.

Years 1948 - 1973 1974 - 1990 1991 - 2010 2011 - 2023
. * Malu-raga * Alaia " lacai vermelho
* Abulai . * Kataco
. * Mamussu ¢ Aninha
, * Aninha . * Loque
* Joncuba « Atanham * Murungo * Arica 06 « Malan-dan
* [talica * BG 400 SLR . Bai deira * N’conto * Arica 07 « Malmon
* Adusta * Jambaram * BG-380-2 « Béhdma * Nhiue e Atanha « Malubrasa
* Amaura * Jambaram * BG400-2  Bentana * Nhoqué * Baga-male « Malu-dineo
* Americano branco * BG400-SRI « Berendued * N'thanthé * Bakungabu « Malu-N’ dgaure
 Atanha * Landjau * Cablack « Bimbiri rﬁ * N'uérique * Balenabu « Malu-sauho
 Atrobrunnea * Malanotrix *Jaca « Cataco * Péra n'djubi * Bamakabu « Mamusso
* Bandjulo * Malicoid *JR15-19 « Catanha * Kissidugo * Barnonte «N’conto
* Cuncu béle * Méné *JR2035-120-3 . Cau * Quissampena/Sampena  * Batumpaiabo « N’conto branco
* Cycliana * Mohodbe *Rd15 « Caubl *Rd15 * Brasil « N’conto breto
Varieties * Cristal * Mutica *RD15 sii;l leasc * Rok5 * Bucar/Buré N dolo—cp oc
(Angola) * Ruio (Angola) +RG380-2 . Cabliak * Santi * Cablak/Caubla “N’eel P
* Dichroa * Opené *ROHIB 15 « Caublac xau Sila * Cataco . Ne%ica
* Dinqueri * Poupa *ROHYB 6 « l4cé penel « Sili * Catio « N'thanthé
* Elongata * Santi * Rok5 « l4cd foriéso * Socuba * Djambaram/Jambaran RD15
* Feluge * Selho * WARI « l4cd pami * Some/Thom * Djelele « Rok25
* Gambiel * Senco * WAR77 . L()bin)m * Spinola e Dus-cascas/4 « Rok5
* Gilanica * Sepica * WAR77-55-2-2 « Mafanhi * Thom-dam cascas/Aferenqué « Sampena/Quissampena
*Jaca * Some (Thome) * WAR-81-2-1-1 « Malmala * Thom-som * Edjur . Seli /FS,,ili P
* Tanha * WARS1-2-12 * Thorno * Etelé
* Malmom . . * Thom
(N'conton) * Yaca-keba * Jacai Adi «Vaca
* Yacuncola * Jacai branco
* Malu-malu . * Yaca branco
* Yaka * Jacai Tomor
* Yaca-saw / Xau
(Adesina and Seidi,
L 1995; Koehring .
(Castro, 1950; Espirito-Santo, T i (Cormier-Salem, 1999; W Hawthorne, ) )
References  1948; J. Espirito-Santo, 1949; 1980; Miranda, 2001: Penot, 1998, 1992; Temudo, 2011, (088, 2023; Teeken et al., 2012; Temudo,

Ferreira, 1968; Linares, 2002)

1993; Penot, 1995;
Seidi, 1998;
Temudo, 2011)

1998)

2011; Tesio et al., 2021)

54



The rice varieties may be classified based on the crop cycle duration: short-cycle
varieties (> 90 days after sowing (das)), medium-cycle varieties (115 — 125 das), and
long-cycle varieties (>135 das) (Cormier-Salem, 1999; Linares, 2002; Miranda, 1993;
Penot, 1992; Teeken et al., 2012; Temudo, 2011; Tesio et al., 2021). This depends
primarily on the rice species as O. glaberrima varieties tend to have a shorter growth
cycle compared to O. sativa varieties (Adesina and Seidi, 1995; Dossou-Yovo et al., 2022;
W Hawthorne, 2001). Nevertheless, comprehensive data on phenological stages, the
temporal intervals between these stages, the quantification of phenological stages based
on cumulative growing degree-days, and other pertinent factors are still missing.
Understanding the phenological stages of these rice varieties and growth cycles is crucial
for developing more precise agronomic recommendations. Therefore, rice varieties in GB
lack comprehensive life cycle characterization. Particularly because there is limited

evidence for defined phenological stages and growth durations.

As shown in the analysis above, rice varieties cultivated in GB have significant
genetic variability. Therefore, both genetic and agronomic studies are essential to identify
and fully characterize the local varieties specifically used in the MSRP agroecosystem.
This information will support adequate agronomic recommendations in times of socio-

environmental changes, particularly in terms of water scarcity and salinity issues.
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4. Salinity and salt management in the MSRPS in GB
4.1. Base concepts
Soil salinity is an excessive accumulation of soluble salts (K*, Ca*, Mg?*, ClI” and
SO4*) and/or exchangeable sodium (Na) in the rhizosphere or root zone (McGeorge,
1954). Salinity in agricultural waters and soils is ascribed to both hydro-geological and
anthropogenic mechanisms. Soil salinity problems occur in a variety of climatic
conditions but are most evident in arid and semi-arid climates where rainfall is insufficient

to leach accumulated salts in the root zone of crops (Hopmans et al., 2021).

Secondary salinity became an adjunct of irrigated agriculture since it charted almost
similar path with the commissioning of several irrigation schemes (Ghassemi 1940- et al.,
1995; Hopmans et al.,, 2021). Major types of soil salinization include shallow
groundwater associated salinity, transient dryland salinity, irrigation-induced salinity
(Hopmans et al., 2021; Rengasamy, 2016), and the intrusion of saltwater from the sea

(Hopmans et al., 2021).

High levels of soluble salts in the soil affect its physico-chemical properties, causes
osmotic changes in soil water, namely increasing the osmotic potential, which leads to
the reduction of plants water uptake, directly decreasing the plant growth rate, and
consequently leading to a decrease in crop production (Ayers and Westcot, 1985a;
Hoffman and Shannon, 2007; Hopmans et al., 2021; Minhas et al., 2020, 2019;
Rengasamy, 2016; Rhoades et al., 1992). High sodium or low calcium levels in the soil
or water affects the soil permeability and may cause crusting hazards. This reduces the
rate of water infiltration into the soil to such an extent that not enough water is able to
infiltrate and to refill the rootzone, thereby failing to provide the plant adequate water

supply (Ayers and Westcot, 1985a; Minhas et al., 2020, 2019; Rhoades et al., 1992).
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In sodic soils clay dispersion occurs when the electrolyte concentration falls below
the clay flocculation value. Sodium-affected soils, that have low salinity have low
structural stability, low hydraulic conductivities, and infiltration rates. These poor
physical properties result in reduced crop yield caused by the combined effect of poor
aeration and reduced water supply. Low infiltration rates can also lead to severe soil

erosion particularly under heavy rain conditions (Sparks, 2003a).

The accumulation of salts in the soil leads to chemical imbalances within the soil
matrix, subsequently giving rise to nutritional deficiencies in plants (Van de Craats et al.,
2020). When the concentration of salts in the soil solution reaches a critical salinity level,
called threshold salinity (Maas and Hoffman, 1977), it causes severe water deficits in plants,
restricts plant growth, and can result in plant death (Machado and Serralheiro, 2017).
Specific toxicity effects may occur in plants, mainly in woody perennials, in the presence
of certain levels of chloride, sodium, and boron (Ayers and Westcot, 1985a; Hoffman and

Shannon, 2007; Hopmans et al., 2021; Rhoades et al., 1992).

In saline soils, pH and acidity can also adversely affect plant growth. Soil acidity is
primarily caused by an increase in the concentration of H' ions (Agegnehu et al., 2021;
Sparks, 2003a). In tropical soils, the primary cause of acidity is the hydrolysis of Al*,
whereas in soils with anoxic conditions and high organic matter content, acidity is directly
caused by the release of H" (Agegnehu et al., 2021; Giri et al., 2022). In general, saline
soils tend to have alkaline pH values (pH > 7), this may lead to issues with nutrient
solubility in soil solution. However, this condition can change if other chemical
compounds are present that can significantly reduce the pH, such as sulfates (Sylla, 1994).
Extremes in soil pH (whether high or low) directly impact nutrients solubility,

consequently diminishing essential nutrients uptake by plants (Ferndndez and Hoeft,
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2021). Both conditions exist in mangrove soils, mainly in soil with good oxygenation and

active redox changes (Bolanha novo). All these issues impact rice growth and yield.

The salinity quantification in the soil solution is easily determined by the electrical
conductivity (EC) measurements evaluated in 1:2 (soil:water extract) or 1:5, and in soil
saturated paste extract. The soil sodicity is based on the determinations of the
Exchangeable Sodium Percentage (ESP) or the Sodium Adsorption Ratio (SAR) (Kargas

et al., 2020; Machado and Serralheiro, 2017).

Salinity affected soils are classified into saline, alkali and saline alkali based on
ESP and EC (McGeorge, 1954). Saline soils are those having an EC in saturated paste
extract above 4 dS m™! and an ESP < 5% (Kargas et al., 2020; Strawn et al., 2015). Sodic
soils, present a high concentration of sodium, as indicated by an ESP > 15% and EC <4
dS m!. The saline-sodic soils, which exhibit both high EPS (> 15%) and high EC (>4 dS
m') (Sparks, 2003b; Strawn et al., 2015). If the system has high sodium concentration
(ESP > 15%) and low EC (< 4 dS m™), there is a high probability of soil structure loss

due to clay particle dispersion (Van de Craats et al., 2020).

Salinity management strategies usually aim to prevent salts accumulation in the root
zone to levels that limit root water uptake, controlling salt balances in the soil-water
system by preventing continuous accumulation in the root zone, and minimizing the
hazardous effects of salinity on crop transpiration and consequently on crop growth and
yield. Under saline conditions, irrigation should aim at maintenance of sufficiently high
soil water potential and cause salt leaching in the soil profile (Maas and Hoffman, 1977;
Minhas et al., 2020). However, under rainfed conditions, salt leaching occurs through
precipitation, the timing of which may limit the suitability of the soil for crop production

and/or sowing timing(Minhas et al., 2020).
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Nowadays, remote sensing instruments and aerial photography are used to map
salinity because it is impractical to directly measure root zone EC over large areas. The
FAO has provided a world map of soil salinization, the GSASmap, derived from a
harmonized world soil database (FAO., 2021). Unfortunately, this information is not
available for GB, as no studies have been conducted in the country that could provide

such information and is therefore a research gap that needs to be closed.

4.2. Salinity in the bolanhas of MSRPS

The impact of salinity represents one of the challenges in MSRP across West Africa.
Some studies have indicated that drought (33%), iron toxicity (12%), cold (7%) and
salinity/sodicity (2%) are the most prevalent and significant stresses affecting rice crops
in Africa (Africa Rice., 2011; Balasubramanian et al., 2007; Dossou-Yovo et al., 2022).
Plants exhibit a significant adaptive response to cope with water loss by enhancing
stomatal closure, thereby reducing CO> exchange, impeding photosynthesis and, thus
reducing yield (Agurla et al.,, 2018; Bazrafshan et al., 2020). Furthermore,
evapotranspiration exacerbates the salinity effect, because water can mobilize cations

from deeper soil layers into the upper layer near the rhizosphere.

Abiotic stress caused by salinity inhibits rice growth. The soil where MSR is
cultivated are alluvial, formed by the deposition of sediments by seawater flows that
naturally introduce salts into the system (Teixeira, 1962; Ukpong, 1997, 1995). These
areas are highly saline and support rice growth only during the rainy season when a period
of lower toxicity occurs (Chauhan et al., 2017). Maximum concentrations in some plots
in GB were found to be between 195.8 and 5599 cmol(+) Na per kg soil and an electrical
conductivity (EC) of 53.75 mS cm™ (D’Amico et al., 2023). During the rainy season, salt

concentration can drop to levels below 5 mS cm’, allowing weeds and rice to grow

59



(Ecoutin et al., 1999; Penot, 1994). This period represents a strategic phase for farmers,
to take advantage on these specific moments to grow rice. During the dry season, certain
plots adjacent to mangroves and saltwater are used for extracting salt, especially intended

for culinary purposes.

Due to the specificity of the MSRPS conditions a different classification for soils
affected by salinity was proposed by (Sylla et al., 1995); the classification is based on EC
(measured in 1:5 soil water suspension) and on the suitability of the soil for rice
production as depicted in Figure 2.6. These systems are defined by their status at the end
of the dry season, particularly at the beginning of the rainy season (Sylla et al., 1995). It
has been found that rice cultivation can thrive in Class 1 (non-saline) and Class 4 (very
saline) soils. This can be achieved by using salt-tolerant rice varieties and ensuring

adequate rainfall to facilitate leaching and reduce soil cation levels.
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Class 5: e EC=>10mS/cm (1:5)
. * Rice can not survive.
Hypersaline
Class 4: ¢ EC=5-10mS/cm (1:5)
> ) * Rice cultivation is possible only in wet season, highly
Very Saline tolerant rice varieties and very good leaching.
> . * Rice can be cultivated only with
Saline tolerance variety and efficient leaching.

Class 2: e EC=2-1mS/cm (1:5)
> Slightly Saline | * Rice growth without problems

:> Class 1: e EC=<1mS/cm(1:5)
» Freshwater

Non-saline

Figure 2.6. Salinity classes according to electrical conductivity (EC) in water suspension
(1:5) for final dry condition (before the beginning of the rainfall season) based
on the salinity tolerance of rice. Downward arrow illustrated decrease in class
as a result of rainfall, salt dilution or leaching. (Adapted from (Sylla et al.,

1995))

As previously stated, the MSRP in GB is determined by initial and final conditions
regarding soil salinity concentrations. Due to the different initial salt concentrations in
different plots, these conditions are not uniform everywhere (D’ Amico et al., 2023; Guei
et al., 1997), and depend on the amount of retained freshwater, resulting in additional
dilution of salts as the MSRPS typically lacks proper drainage. Some reports have found
that in mangrove systems in Nigeria, the spatial distribution of salinity is related to
nutrient relationships and textural gradients (Ukpong, 1997). The initial rainfall,
depending on the amount of water, may also favor the leaching of some salts to deeper
horizons, possibly leading to their accumulation in the groundwater. The assessment of
the initial salt concentration is performed by farmers when they start planting the rice.

Due to the lack of appropriate tools farmers use biological (such as the presence of certain
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weeds), and physical (such water temperature and the taste of the water) indicators.
Comparable indicators have been documented in rice production in India (Padhy et al.,

2022).

The final state of the rainy season has a direct impact on crop yield since salinity
can influence the critical phenological stages of rice plants. The final phenological stages
of rice (R5-R7) are crucial for productivity, as stress during this period can directly affect
the yield (Sylla, 1994; The Republic of Guinea-Bissau., 2018; Thiam et al., 2019; van
Oort, 2018). This happens every year when the plots revert to their original conditions.
This typically occurs between two months after the last rainfall. At this time, water
evaporation and crop transpiration increase the salt concentration in the plot, resulting in
stress for non-tolerant rice varieties (Chauhan et al., 2017; Marius and Lucas, 1982;
Wolanski and Cassagne, 2000). Some authors report that salinity is the most limiting
factor in rice production in GB (Van Ghent and Ukkerman, 1993). For this reason, farmers
in the northern region of the country strive to store and maintain the maximum amount of
water in the plots. There are currently no regional studies on water-salt balance, osmotic
effect on rice plants, and evapotranspiration corresponding to the varieties of MSRP
found in GB. For this reason, some authors recommend conducting regional studies on

soil salinity in MSRPS (Sylla et al., 1995; Thiam et al., 2019).

Only a few studies report on soil water balance and salt movement (Sylla et al.,
1995; Thiam et al., 2019) and only one focuses on GB (Sylla et al., 1995; Thiam et al.,
2019). Therefore, there is a research gap regarding the adequate characterization of the
MSRPS in terms of the dynamics of salts during both the rice season and the offseason,
which is essential for establishing an appropriate schedule for the timely commencement

of rice production in each region/type of field.
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4.3. Salinity and water productivity in the MSRPS

According to the recent review by Minhas et al. (Minhas et al., 2020) the
relationship between plant growth and heterogeneous salinity in the root-zone is complex.
Thus, plant growth responds to the weighted-mean salinity of the root-zone, as well as to
the site-specific response of the roots and their ability to uptake water from the soil. Plants
expend more energy to extract water from saline soil due to the high affinity of salts for

water and therefore growth and yield are reduced.

Several studies have shown that crop yield and transpiration are less sensitive to low
osmotic potential than to low matric potential (e.g., (Allen et al., 1998)). Under saline
conditions, many plants can partially compensate for the low osmotic potential of soil water
by building up higher levels of internal solute. This occurs through the absorption of ions
from the soil solution and through the synthesis of organic osmolytes. However, the synthesis
of organic osmolytes requires the expenditure of metabolic energy which will affect plant
growth by reducing it under saline conditions. Reduced plant growth affects transpiration

through the reduction of ground cover.

Aiming at assessing the reduction impacts of both soil and water salinity in crop
evapotranspiration and yield, empirical crop salt tolerance response functions have been
developed for several crops, namely rice (Maas and Hoffman, 1977). These functions
allow defining yield reduction as a function of total soil solution salinity based on EC.
The derived functions by combining yield-salinity equations (Ayers and Westcot, 1985b)
with yield-ET equations (Doorenbos and Kassam, 1979). The resulting equation provides
a first approximation of the reduction in evapotranspiration expected under various
salinity conditions and has been widely used in field conditions (e.g. (Liu et al., 2022a,

2022b; Rosa et al., 2016)). Crop yields remain at potential levels until a specific threshold
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of electrical conductivity of the saturation soil water extract (ECe threshold) 1s reached (Allen
et al., 1998; Maas and Hoffman, 1977). Once the average EC. of the root zone exceeds
this critical threshold, yield is assumed to decrease linearly in proportion to the increase

in salinity (Allen et al., 1998; Pereira et al., 2007).

The rate of yield decline with increasing salinity is usually expressed as a slope, b,
with units of % yield decrease per dS m™! increase in ECe. This is because not all plants
respond similarly to salinity, as some crops are better able to make the necessary osmotic
adjustments that allow them to extract water from a saline soil, or because they may be
more tolerant to some of the toxic effects of salinity. According to the salt tolerance scale,
rice is a sensitive plant and therefore does not tolerate high EC.. The ECe (threshold), for rice
is 3 dS m™ (Allen et al., 1998; Maas and Hoffman, 1977). As discussed by (Grieve et al.,
2012), this ECe treshold presents errors and further research is needed to reduce the uncertainty,
particularly when using salt-tolerant varieties. In addition to this piecewise linear function,
various non-linear models have been proposed to relate crop yield to salinity (Genuchten
and Hoffman, 1984). Several authors (e.g. (Allen et al., 1998; Pereira et al., 2007)) have
stated that the effects of soil salinity and water stress are generally additive in their

impacts on crop evapotranspiration and therefore in terms of crop growth and yield.

On the one hand there are the steady-state models which assume that salt
concentrations in soil water are almost constant for a given location and time period,
allowing a simple representation of soil salinity and plant growth conditions. For
example, the SIMDualKc¢ model, which applies the FAO dual-crop coefficient approach
to partition crop evapotranspiration into crop transpiration and soil evaporation, uses a
steady-state salinity approach and computes the soil water balance daily using transient
information (Pereira et al., 2007; Rosa et al., 2016, 2012), allowing appropriate water

management and irrigation in saline/sodic environments. SALTMED model (Ragab,
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2002) constitutes another example of models using this precise approach (Maas and

Hoffman, 1977) for computing the soil water balance under salinity conditions.

On the other hand, there are the transient state models that simulate changes in soil—
water content and salinity in the root zone caused by irrigation, rainfall, soil heterogeneity
and management options. These changes may refer to timing and amount of irrigation,
variable soil salinity conditions, variable crops and crop salinity tolerances, and variable
irrigation water quality including rainfall. This group of models include, among others,
UNSATCHEM (gimﬁnek and Suarez, 1994), SWIM (Verburg, 1996), SALTMOD
(Oosterbaan, 2000), SALTMED (Ragab, 2002), SWAP (Kroes et al., 2017; Van Dam et
al., 2008), and HYDRUS (Simﬁnek et al., 2016). Unfortunately, we have not found any
salt modelling study related to rainfed rice, mangrove swamp rice or any rice-salt-

modelling studies for GB or on the African continent.

As previously discussed, the MSRPS system in GB has a high concentration of
soluble salts in the soil. In addition, there are no irrigation systems or others freshwater
sources available (The Republic of Guinea-Bissau., 2018). Therefore, rice production is
limited by the amount of rainfall, which is responsible for leaching salts to deeper layers
(Cornelissen et al., 2020). Effective freshwater collection and management ensure rice
production and, consequently, high-water productivity of collected rainwater. However,
there is no information about the water and salt balance in the system to improve farmers’
harvesting schedules. Therefore, such information is required to adequately design
strategies and practices that enable better control of salinity and thus improve farmers’

livelihoods.

To evaluate the performance of different rice farming systems, such as MSRPS, and

develop practices that result in higher yields and/or water savings, it is important to use
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indicators such as water productivity. This type of indicator allows comparing different
cropping systems. The physical water productivity (WP, kg m™) is defined as the ratio of
crop yield to the total water use (TWU) required to achieve the harvestable yield,
expressed as kg m™ (Ferreira et al., 2023; Pereira et al., 2012; Rodrigues and Pereira,
2009). The TWU is specified by the sum of four factors that quantify an approach of

water consumed; thus, water productivity is computed as;

Ya

WP = Asw + CR+ 1

(Eq2.1)

where:

Ya- total harvested grain (kg)

P: seasonal rainfall amount (m°)

ASW : variation in soil water storage in the root zone from planting to harvest (m°)
CR: capillary rise or groundwater contribution from a shallow water table (m?)

1: total seasonal irrigation amount (m>)

As already mentioned, in saline soils, despite good agronomic management, the
potential crop yield is not achieved and therefore the WP is reduced. Frequently, the WP
denominator (Eq. 2.1) in MSRP does not take irrigation into account because it is not
used. The reduction in water input is expected to be less than the reduction in yield,

resulting in low WP (Bouman et al., 2007).

Under salinity conditions, an additional fraction of water is required to make the
soil productive. Normally, irrigation water is increased by the leaching fraction (Maas
and Hoffman, 1977; Minhas et al., 2020). Thus, the term TWU in Eq. 2.1 quantifies
additional terms associated with salinity-induced stress on the crop (Pereira et al., 2012;

Rodrigues and Pereira, 2009). First, ET, 4.+ 1S the seasonal actual evapotranspiration
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(when cropped under salinity and other stresses such as water). Second, LF quantifies the
volume of water used to leach the salts from the rhizosphere. Third, N — BWU is the
water not beneficial for the crop, meaning the excess water that flows beyond the rootzone
(deep percolation or drainage), runoff from fields, water losses due to evaporation, and
wind drift in sprinkling in irrigated systems. Therefore, WP quantifies the total production

achieved based on the sum of three main factors as follows:

Ya
WPs =
STET, .u+ LF+ N — BWU (Eq2.2)

where:

W Pgqi1 - water productivity in saline sites (kg m-3)

Yo total harvested grain (kg)

ET, 4ot seasonal actual crop evapotranspiration (m3)
LF : water used for leaching salts from the rootzone (m3)

N — BWU': non-beneficial water use (m3)

In GB this WPsar: concept is most applicable to the MSRPS due to the presence of
salt. However, no information is available to account for the losses in non-beneficial water
use (N-BWU); these are mainly due to evaporation of paddies water, and in very few
cases due to system drainage (Bouman et al., 2007). Runoff is commonly null unless
precipitation events are high and in extreme cases may lead to the destruction of the dikes.
Rice yield under salinity conditions may be improved through the implementation of

breeding strategies which will increase WPgal.

As discussed by Zwart (Zwart, 2013) comparing different rainfed cropping systems
based on water productivity indicators must be performed with caution and non-

manageable factors should be excluded. High WP values obtained under non-saline soils
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or saline shallow water-table cannot be set as a benchmark value for a rainfed rice system;

this means that regional or local optimized WP values should be used.

Essentially, constraints on rice yield within the MSRPS, and consequently on rice
WP, are mainly related to challenges in efficient water management practices that enable
soil salinity control. Every farmer must work closely with his neighbors to produce rice
and gain a good understanding of water dynamics (through endogenous knowledge and

informal networks of kin and kith) to ensure a successful rice harvest every year (Caeiro,

2019).

Due to the lack of information regarding local mangrove swamp rice yield, salt
balance, and rice seasonal rainfall amounts there are, to our knowledge, no studies
available about WP estimates in GB. Furthermore, we did not find any study on water
productivity associated with mangrove swamp rice affected by salinity on the African

continent.

5. General soil properties, taxonomy, and topography in MSR fields
MSR fields have different physicochemical soil properties and levels of anoxia
compared to former mangrove soils. The latter are considered to be high-sulfur
environments with a notable presence of clays and salts (Sylla, 1994). However, despite
having the same pedogenic formation, bolanhas’ soils are distinguished by high oxidation
levels that allow the growth of plants susceptible to salinity (D’Amico et al., 2023). This
allows the development of new soil horizons characterized by different chronologically

deposited materials (Andriesse and Fresco, 1991).
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5.1. Soil taxonomy in associated - tidal mangrove fields and tidal
mangrove terrace

In general, GB presents three main soil categories in terms of soil physicochemical
properties. The ferrallitic and ferruginous (non-hydromorphic) soils, in which a high
concentration of iron predominates, are red in color and occur in upland areas. The
hydromorphic soils, which include both marine alluvial (Halo-hydromorphic, as the ones
of bolanhas salgadas) and continental (Grey, alluvial and terrace, Gley, Humic-gley)
soils, characterized by long periods of anoxia and the presence of gley horizons
(Oosterbaan and Vos, 1980; Teixeira, 1962; Ukpong, 1997). Finally, the lithic soils are
characterized by the presence of rocks and consolidated materials in their horizons
(Teixeira, 1962). A clear topo-sequence is observed in many villages (Table 2.4) with
hydromorphic soils (Bolanhas’ soils) occurring alongside ferrallitic soils (villages’
upland soils). These ferrallitic soils are used for growing cash crops such as cashew,

vegetables, and for rice nurseries.

Gleization soil conditions are prevalent in mangroves and plots soils, along with
high concentration of sulphites and sulphates and a significant variability in soil organic
carbon (SOC) concentration. Reduction conditions are commonly observed in mangrove
soils (Teixeira, 1962). This extends across the entire soil profile, particularly within the
first 150 cm of soil depth. In contrast, Bolanhas’ soils are predominantly characterized
by annual fluctuation in groundwater, with depths ranging from 30 to 150 cm below the
soil surface (D’Amico et al., 2023). Soil taxonomic classifications reported for
mangroves’ and Bolanhas’ soils are categorized based on the presence of sulphates and
sulphites, horizon development, and organic matter content (Table 2.4). Thus, this
variation is observed across the entire toposequence (tidal mangroves, associated

mangroves, and old Bolanha fields), including mangrove areas and villages. In addition,
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certain locations have been reported to have low concentrations of SOC derived from
marine carbon (Andreetta et al., 2016). In this context, the deserted plots showed a
significant decline across the soil profile compared to mangrove soils and new plots

(Andreetta et al., 2016; D’ Amico et al., 2023; Marius and Lucas, 1982).

The design of Guinea-Bissau’s MSR plots varies depending on agroecologies’
differences and the cultural practices of each ethnic group for water management,
resulting in changes in the physicochemical properties of the soils. Different plot designs
exist between the southern and northern regions of the country, with ethnic groups
determining the size of plots based on the amount of stored fresh water they want to
harvest (Figure 2.7). In the southern and central parts of GB, farmers construct dikes with
significantly larger dimensions than those in the north. The probability arises from the
soil texture, potentially facilitating the construction of larger dikes and deeper primary
drainage channels (Figure 2.7, A.3), attributed to the clay deposit from alluvial sediments
into the soil profile (D’ Amico et al., 2023; Teixeira, 1962). In addition, the high rainfall
levels lead farmers to modify internal drainage systems at the plot level to remove salts
and increase leaching during the first rains (Cooper and McConkey, 2005; Espirito-Santo,
1949). For example, southern farmers design internal drainage systems (without outlets)
within plots, while farmers in the north do not implement drainage systems to maintain a
consistent water level within the plot (Oosterbaan and Vos, 1980). This has a significant
impact on the salt concentration in the plots as farmers in the south manage to flush out
the salt present in the upper soil layers with the first rainfall. Through the dilution of salts
and their transport to the small drainage systems without outlets (Figure 2.7, A.S), farmers
have a convenient method to open the plot and discharge the saline solution before soil

tillage.
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Table 2.4. Soil taxonomy and physicochemical characteristics in mangrove terrace, tidal

mangrove and associated mangrove fields in Guinea-Bissau.

Tidal mangroves

Characteristics Tidal mangrove fields Associated mangrove
terrace
Haplic Histic Sulfaquents, Hapic
sulfaquents, sulfaquents, Typic
Typic Sulfaquept, Sulfic ] o
) Pisoplinthic,
sulfaquents, hydraqiuentsm, S
Soil taxonomy Hypothionic, Tidalic,
Sulfic Tropofibrits )
(USDA) Oxyzgleyic,
Fluvaquents, Psammaquents, Sulfic
) Tropoquepts,
Sulfic, tropaquepts, Typic
) Endoaquents.
Hydraquents, tropaquepts, Aeric
Sulfohimists, tropaquepts,
Hemists, Fibrists.  Psammaquents.
o o Pisoplintic,
Tidalic, Hypothionic, o
. o ) Hypothionic, Gleysol
Soil taxonomy Oxygleyic, Pisoplintic, Oxygleyic,

(abruptic, loamy,

(WRB-FAO) Gleysol (clayic, Tidalic, Gleysol (vertic, o )
] L . ) drainic, salic, clayic,
hyposulfidic). drainic, salic, clayic). )
vertic).

Geochemical ] S o

Anoxic Sub-oxidation Oxidation
conditions
Solubility of sulphates ) ) )

High High — Medium Low
and sulphites
Al - Fe*? toxicity High High — Medium Medium - Low
Na™* High High Medium - Low
Soil organic carbon High High — Medium Low

Reduced iron
(Fe*)

Iron monosulfide

Iron monosulfide (FeS)
Pyrite (2FeS,)

Reduced iron (Fe?")

Pyrite (2FeS,)
Hydrogen (H")

Oxidized iron (Fe*) Aluminum (AI3)
Possible chemical (FeS) S
Hydrogen (H") Oxidized iron (Fe™)
formations Iron disulfide ]
Hydrogen sulfite (H»S) Sodium (Na*)
(FeS») )
Aluminum (AI*?) Sulphate (SO4*)
Sulphate (SO4>)
Sulphites (SO5*)
(Andreetta et al., 2016; D’ Amico et al., 2023; Marius and Lucas, 1982;
References

Teixeira, 1962)
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Figure 2.7. Characteristic of southern Balanta (A), northern Felupe and Baiote (B) and
an example of new bolanhas (C) in Guinea-Bissau. 1 = Main dike in the South
(Orike grande); 2 = Verandah (Varanda); 3= Main drainage (Valeta); 4 = Plots
bunds (Orike pekno); 5 = Small drainage without outlets in the South (Valeta
do prike); 6 = Main dike without verandah in the North (Orike grande); 7 =
Plot without internal drainage in the North (Prike); 8 = Ridges (Réguas); 9 =
New plot without ridges (Bolanha novo). Adapted from (Cooper and
McConkey, 2005; Cormier-Salem, 1999; Merkohasanaj et al., 2022)

Soil fertility is significantly influenced by proximity to tidal mangrove areas, as
these soils have higher accumulation of SOC. This is related to the quantity of organic
materials present, which mineralize over time and release a significant amount of
nutrients that benefit the crop (Merkohasanaj et al., 2022). Due to the decline in SOC
occurring in old plots (Andreetta et al., 2016; D’Amico et al., 2023), farmers in GB
frequently tend to develop new mangrove swamp fields (Figure 2.7, C.9), with the aim of
finding more fertile and highly productive areas for growing rice. However, as previously

mentioned the new plots (bolanha novo) are the only areas with a high concentration of
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salts and sulfuric acids in the first surface layers of the soil. Due to their active oxidation
state, this can potentially cause serious problems with rice growth. This is different from
bolanha de tarrafe and bolanha de metade tields (plots located in the middle part of the
paddies far from the mangroves), as these have undergone prolonged oxidation. Many of
these salts, sulfites and sulfates, were leached by rainfall and settled in deeper horizons,

where they do not affect rice growth (D’Amico et al., 2023).

3.2. Acidity formation in tidal mangrove soils.

Sulfuric acids in the soils of MSR fields start affecting the crop in the early stages
of the new plots (first 3-5 years). New plots are the most vulnerable sites because they
initiate the desalination process and exhibit active pedochemical acidification (Table 2.4,
Figure 2.8). These chemical processes depend on the amount of rainfall in the system as
fresh water catalyze chemical processes and leach toxic compounds such as sulfuric acid
(2S04%), hydrogen sulfite (H2S), pyrite (2FeS,), reduced iron (Fe?") and iron monosulfite
(FeS) into deeper soil layers (Sylla, 1994; Van Ghent and Ukkerman, 1993; van Oort,
2018). Within the dynamic systems of oxidation and reduction, pyrite and sulfuric acid
are formed, and organic materials decompose (Figure 2.8). These processes can increase
soil acidity, resulting in extremely low pH values (< 3.5), reducing the availability of
various nutrients to plants (N, K, Ca, Mg, P, Zn) and causing toxicity (Al**, Fe?") in the
soil (Dossou-Yovo et al., 2022; Sylla, 1994). However, in some tidal mangroves (bolanha
de Tarrafe) and associated mangroves (bolanha Metadi) these processes only occur at
deeper horizons where they do not affect the plant's root system (Andreetta et al., 2016;
D’Amico et al., 2023; Sylla et al., 1995; Teixeira, 1962). In summary, villages in the
northern and southern regions face problems of sulfuric acid toxicity especially in
“bolanha novo”, with some “bolanha de Tarrafe” occasionally affected by a strong

influence of groundwater levels and tides (Marius and Lucas, 1982).
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Figure 2.8. Chemical process in acid sulphate soils under Mangrove swamp rice

production systems. Adapted from of (Sylla, 1994; Teixeira, 1962).

6. Rainfall patterns and farmers’ agronomic practices related to water
management in the MSRPS

The rice production cycle in GB is constrained by the rainy season (onset and
duration and length of dry spells) and the accumulated rainfall. Fresh water availability
1s the limiting factor for rice production across the country, especially in the MSRPS. The
system relies on salt leaching and substantial water accumulation to ensure a complete
crop cycle. Recent rainfall reports have shown that rainfall patterns are heterogeneous
(Mendes and Fragoso, 2023; Njipouakouyou et al., 2019). In the period from 1961 to
1985, there was a significant decrease in rainfall in the country (Figure 2.9). However, it
is estimated that there has been a slight increase in annual rainfall of around 350 mm over
the last 40 years (Figure 2.9). It is evident that the Bolama region consistently receives
higher rainfall (1953 mm) than the Bafata (1276 mm) and Bissau (1524 mm) regions

(Figure 2.9). For the other MSRPS regions, Tombali, Oio and Cacheu, there is currently
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a lack of meteorological data. Some reports in the 1980s from the Casamance/Senegal,

which lie close to Cacheu Region, estimated that the average annual rainfall ranged from

1200 and 5000 mm (Linares, 1981), which is sufficient to support MSR growth.

Although most regions of the country receive sufficient rainfall for rice production,

the main challenge lies in the uneven distribution of rainfall, that occurs within a relatively

short timeframe (Mendes and Fragoso, 2023). This condition has a significant impact on

rice growth. Rainfall is the most important factor in soil management, agronomic

practices for rice cultivation, and the overall sustainability of the MSRPS. This creates

significant challenges in managing the water and salt balance in rice production (Luning,

1984).
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Figure 2.9. Smoothed conditional means plots of rainfall (mm) in Bolama, Bafata and

Bissau, Guinea-Bissau, for the period 1961-2022. Data source: World Bank

information (The World Bank, 2023) and National Institute of Meteorology of

Guinea-Bissau.

The manual preparation of the plots’ ridges, depends on ensuring adequate soil

moisture for tillage, and therefore on the beginning of the rainy season (W Hawthorne,
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2001; Van Ghent and Ukkerman, 1993). Nevertheless, sufficient soil moisture is required
to avoid problems with soil plasticity during plowing. There is no information available
on the plasticity limits associated with soil tillage, although there are old reports of the
use of mechanization for soil tillage in GB (Cabral, 1954b). However, not all farmers
have the necessary resources for mechanized operations, further exacerbated by limited
access to large machinery on the plots (Cabral, 1954a). Furthermore, heavy machines can
not only compact the clay soils, but also create/increase weed infestations. On the
contrary, the manual plow is an affordable and sustainable tool that is accessible to all farmers
in the villages (Bivar and Temudo, 2014; Martiarena and Temudo, 2023; Temudo, 1998),

with which they can better control soil and weed conditions.

After soil tillage, farmers use two rice planting techniques: transplanting and direct
seeding (Cossa, 2023; Temudo, 1998). Transplanting is the most used technique as it
ensures more uniform distribution of the plants and usually a higher productivity (Nuijten
et al., 2009). There is no exact date for planting in nursery, but generally it depends on
the first rains, individual farmer’s experience, soil moisture, and salinity levels at the sites.
Direct seeding is most frequently used in bolanha de Tarrafe, where the farmer identifies
sites with good fertility and low salinity (Rohrig et al., 2021; Temudo, 1998; Van Ghent
and Ukkerman, 1993). In this technique, some sites are plowed while others simply

planted or broadcasted with pre-germinated rice seeds (Cossa, 2023; Temudo, 1998).

The rice harvest usually begins in November and lasts through January but depends
mainly on the schedule set by farmers, which mainly depends on each year rainfall
distribution pattern in each village. There are agronomic and social problems in the
villages preventing them from using short cycle varieties. When rice is mature in only
few plots of a bolanha, it is very likely that the birds will concentrate their feeding

destroying completely the potential harvest (Linares, 2002; Teeken and Temudo, 2021).
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However, if all farmers harvest their rice at the same time, this problem is distributed
among all plots (Temudo, 1998). Additionally, farmers must plan their harvests based on
the water availability and salinity levels associated with their plots (W Hawthorne, 2001;
Marzouk, 1991). At the end of the crop cycle, the dilution of salts has a reverse effect
(decreases again due to the end of the rains), leading to water and salt stress in rice plants
(Dossou-Yovo et al., 2022; Van Ghent and Ukkerman, 1993). In addition,
evapotranspiration increases the salt concentration in the plots, leading to productivity

problems (Abreu and Correia, 1993; Padhy et al., 2022).

6.1. The use of dikes, bunds and rigdes for water management in the
paddies

The main dikes are structures used to prevent tidal water from entering the paddies
(Figure 2.10), while the bunds are used by farmers to collect and store fresh water inside
the plots. At the topographic scale of the system, the slopes toward the mangroves are in
general minimal and serve only to channel water from one plot to another. In addition,
soil texture, the level of the groundwater and the location of the plots within the paddies
can either favor or hamper a rapid accumulation of fresh water in the plots. Consequently,
dikes play a central role in rice cultivation due to their control over leaching, oxygenation,
and water storage in the plot, distinguishing them from the mangrove forests’ soils (The

Republic of Guinea-Bissau., 2018).

Bunds or secondary dikes surrounding the plots are the primary structure
responsible for managing water levels in the MSRPS (Figure 2.7, A.4). These play an
important role in ensuring the appropriate water depth during rice growth. However, when
heavy rainfalls occur during several consecutive days simultaneously with spring tides,
farmers may be unable to divert the excess water to other plots and then to the sea branch.

This kind of situation led to the loss of a significant portion of rice nurseries in mangrove
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fields during 2022. There is no information about the distribution, quantity, and potential
cumulative water content within the plots according to rain distribution, especially in
relation to high tides (when it becomes impossible to drain excess freshwater through the

drainage pipes to the river or sea branch).

Figure 2.10. Plots of rice production system in mangrove of Elalab, Guinea-Bissau.

Identification of (a) dikes, (b) drainage channels, (c) plots, (d) bunds, and (e)
ridges.

Ridges play a critical role in the MSRPS by increasing soil fertility and reducing
soil resistance to roots penetration. Soil tillage in MSR plots promotes the incorporation
of existing weeds, increasing the amount of SOC and triggering the mineralization
process. Mineralization gradually releases nutrients, promoting the growth of rice plants
and generating satisfactory yields. Additionally, ridges facilitate better rice transplanting
by reducing soil compaction. Some studies have shown that ridges also promote the
leaching of salts and toxic concentrations of soil acids (J Espirito-Santo, 1949; The
Republic of Guinea-Bissau., 2018). The use of ridges is specifically aimed at improving
the management of the soil physicochemical properties in rice production systems. Only

in a few cases, such as new plots, farmers do not use ridges (Figure 2.7, C.9), because the
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soil is already high in fertility and lacks compaction (The Republic of Guinea-Bissau.,

2018). They usually use these plots for rice nurseries or direct planting without tillage.

The bunds (Figure 2.10.d) are the main infrastructure for rice harvesting, agronomic
management, and water conservation in the plots. Proper management of freshwater in
plots can ensure good harvests (J. Espirito-Santo, 1949; W Hawthorne, 2001), effective

pest control, and prevent salinization problems at critical phenological stages (R3-R6).

The potential of the plots for storing fresh water is determined by the height of the
bunds and the topography of the plot floor. After rice transplantation, farmers control the
level of stored fresh water according to the plant height. They open the bunds to ensure
that the water level does not submerge the seedlings, which could lead to their death.
When the rice plants reach a size beyond the limit of the bund, this is closed completely
to maximize water storage. Since fresh water is present within the bund, only rice and
other Poaceae species with aerenchyma tissue can thrive in waterlogging conditions. This
prevents the growth of weeds that could affect rice cultivation. The ruptures in the main
dikes are related to maintenance work, heavy rainfall, soil texture, and high tides. Soils
with a high clay content offer increased rigidity to the dikes, enhancing their stability.
Conversely, in regions characterized by sandy soils, dike maintenance requires substantial
manual labor and constant attention (Bivar and Temudo, 2014; Temudo, 1998). In
northern GB, there have been reports of dike maintenance problems due to labor shortage,
resulting in saltwater intrusion into the polders and complete losses of rice production
areas (Temudo et al., 2022; Temudo and Cabral, 2023). Dike maintenance is a
collaborative task that requires strong cooperation and communication among farmers to

prevent ruptures and facilitate a quick repair during the rainy season.
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In 2020, high rainfall over a short period combined with high and strong tides,
resulted in significant damage to many main dikes in several villages of GB (Mendes and
Fragoso, 2023). This damage led to the intrusion of saltwater into the paddies, causing
significant problems in rice production as farmers lost their harvests and substantial areas
of rice fields and crops. Nevertheless, there is evidence from other countries that saline
water intrusion can help eliminate weeds and increase soil fertility (Wolanski and
Cassagne, 2000); this practice was also used by GB farmers during colonial times.
However, allowing the invasion of the brackish water during the dry season requires high
rainfalls for salt leaching, as it could lead to hypersaline problems at planting sites
(Chauhan et al., 2017; J Espirito-Santo, 1949; The Republic of Guinea-Bissau., 2018;

Wolanski and Cassagne, 2000).

7. Key issues overview and future research

With this review article, we aimed to characterize the mangrove swamp rice
production system of Guinea-Bissau in relation to soil salinity, water use and water

productivity.

The biophysical description serves as the initial approach to comprehending the
intricate dynamics of MSRP in GB. These dynamics are based on over 2000 years of
agricultural experience and acclimatization, during which farmers have learned to
manage this complex system to render it productive for growing rice. Through
observations and experimentations over time, farmers have learned to manage the
physicochemical characteristics of sites, by using efficient water harvesting techniques
and selecting appropriate rice varieties. This has enabled them to create specific swamp
rice production areas (named Bolanhas in Kriol), where they conceptualize the working

methods, suitable varieties for growth and the agronomic care required for each location
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(“Bolanha Belju”, “B. metadi”, “B. tarrafe”, “B. nobu” and “Nhatabas — Tarrafe

novo™).

This information is characteristic for each village, as each region presents vastly
different and highly complex biosystems in terms of climatic conditions, soils, and crop
management needs. Several questions remain to be answered such as: Why do farmers
use drains on the swamp fields in the south, while these are not present in the north? Does
salinity decrease if drains are used within the swamp fields? Can these drains help store
a greater amount of freshwater? How are the initial salt conditions distributed in a MSRP
field? When is the appropriate time for plants to grow without salt affecting their growth
and productivity? There is a need to perform a biophysical characterization of the plots
and create maps of certain physico-chemical soil properties. Due to the specificity of the
system at each location there is therefore a research gap that needs to be overcome. With
this in mind, studies were developed in Cafine-Cafal in the south and Elalab in the north

of GB and presented in the companion article Garbanzo et al., (2024) (Chapter 3).

The agronomic practices developed in the MSRPS in GB are tailored exclusively
for rice cultivation, aiming for optimizing rice yield and water conservation in the
“bolanhas”. A greater availability of freshwater in the plots would ensure rice production
in the villages, as the crop does not face issues of water-saline stress within the system.
These practices have been refined through generations of farmers, benefiting from their
specialized experiences. However, under the current and future climate change scenario,
particularly in terms of variability and reduced rainfall, these already vulnerable systems
will become more fragile. This fragility results mainly from the increase in soil salinity
due to reduced salt leaching by rainfall. It is fundamental to adapt crop management to
the variable rainfall calendar, labor efficiency and the soil hydro-salt dynamics. This set

of constraints affects rice production, exposing communities in the villages to food
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insecurity and malnutrition. Therefore, further information to characterize the biosystems
and rice varieties is essential to develop tailored practices that meet the specific needs of
each village. This information is crucial for supporting decision making when planning

sustainable management of grain production in the near future.

The main constraints to agricultural performance and rice productivity in GB have
been identified and are related to insufficient and irregular distribution of rainfall,
declining soil fertility, and poor water management. The information collected indicated

that there is:

v' A wide range of rice varieties with different names is found in the MSRPS.
Understanding their characteristics of each variety, particularly in terms of salt

tolerance, could improve agronomic recommendations at the national level.

v A lack of understanding of water dynamics in MSRPS. This knowledge, obtained
from field measurements and modelling, could facilitate the efficient planning of rice

production cycles while minimizing problems related to toxicity and salinity.

v A lack of knowledge about the salt balance, especially regarding the initial and final
salinity conditions in different contexts. The development of a tool that allows to
assess the hydro-saline balance performance in the MSRP is crucial to optimize the

cultivation calendar for the timely start of each rice production season.

v Limited information on soil fertility, nutrient dynamics, and their relationship to
MSRPS productivity. Comprehensive soil chemical characterization and

understanding of nutrient dynamics could improve on-site nutrient management.

82



No information regarding the spatialization of physicochemical properties in swamp
fields (“bolanhas"). Spatial mapping of soil properties could help identify areas with

higher fertility, salinity, and the potential for improving rice productivity.

Insufficient studies on plasticity related to adequate soil moisture at the beginning of
farming operations. Generating maps in this regard could provide farmers with
valuable tools, allowing them to prioritize sites with optimal conditions for soil
tillage. The companion article by Garbanzo et al. (Garbanzo et al., 2024) developed

soil consistency maps with the aim of supporting farmers in decision making.

A lack of studies on tidal dynamics for the creation of an early warning system and
on main dike management. Providing information about extreme climatic events,
monitoring and identifying vulnerable zones and help in the dissemination of recent
endogenous innovations on dike building and maintenance could help prevent

saltwater intrusion and minimize losses in rice production.

A lack of continuous regional climate monitoring programs. Characterization of
regional climatic variables could assist in agronomic calculation of rice water
requirements in the MSRPS of GB. This would enable the development of early

warning systems to support decision-making in rice production.

Local constraints to balance ecosystem sustainability with the food needs of coastal
people, who feel urged to clear new mangrove areas to create rice fields even when
there was a need to restore deforested areas to prevent dike ruptures and harvest
failures. This implies that compensation mechanisms for poor coastal inhabitants

must be created to protect ecosystem services in GB blue carbon environments.
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v External interventions or development projects do not usually align with the local
realities and the needs of farmers’ leading to challenges in implementing sustainable

practices.

v Limited programs to restore desertified swamp fields. Initiating restoration efforts
for these plots could include planting trees through the introduction of agroforestry

practices and/or improving the conditions for reviving rice cultivation.

Overall, there is still a lot of progress to be made in terms of research relative to

MSRPS conservation and management.
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Chapter 3

Moving toward the Biophysical Characterization of
the Mangrove Swamp Rice Production System in
Guinea Bissau: Exploring Tools to Improve Soil-
and Water-Use Efficiencies

This chapter was published in Agronomy.

Garbanzo, G., Céspedes, J., Sandoval, J., Temudo, M., Paredes, P., Cameira, M. do R.,
2024. Moving toward the Biophysical Characterization of the Mangrove
Swamp Rice Production System in Guinea Bissau: Exploring Tools to
Improve Soil- and Water-Use Efficiencies. Agronomy 14, 335.
https://doi.org/10.3390/agronomy14020335

Keywords: Water Management; Water Harvesting; Soil
Consistency; Soil Salinity; Soil Tillage; West Africa.
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1. Abstract

The mangrove swamp rice production system (MSRPS) in West Africa faces significant
challenges in soil, water, and salinity management, making rice production highly
vulnerable to variations in the spatio-temporal distribution patterns of rainfall, which are
exacerbated by climate change. This study’s results can provide the initial basis for co-
developing strategies with farmers aiming to contribute to the biophysical
characterization of the MSRPS, in particular: (i) estimate the water-harvesting efficiency
(WLe) of the plots in the north and south of Guinea-Bissau (GB); (ii) characterize the
unevenness of the bottom of the plots, which leads to salinization spots; and (iii) create
soil consistency maps to provide farmers with a tool to prioritize sites with optimal
conditions for tillage. The research was conducted between 2021 and 2023 in the study
site of Cafine-Cafal in the south and Elalab in the north of GB. Systematic soil sampling
in a grid was designed to quantify the soil consistency and plot/ridge areas were
determined. Linear models were developed to predict biophysical parameters (e.g.,
effective planting areas and water-logging depths) and geostatistics were used to create
soil consistency maps for each study site. The results show precipitation water-harvesting
efficiencies of 15% and 16% for the southern and northern regions, respectively.
Furthermore, the plasticity limits of 18.6% for Elalab and 35.5% for Cafine-Cafal show
the most appropriate times to start tillage in specific areas of the paddies. This study
provides information on the efficient management of tillage and freshwater conservation,
providing MSRPS farmers with useful tools to counteract the effects caused by salinity

and rainfall variability.
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2. Introduction

Rice is one of the main cereals in the diet of tropical countries worldwide.
According to estimates by the Food and Agriculture Organization, its production has
increased from 426 to 510 million tons over the last 10 years (Chauhan et al., 2017; Food

and Agriculture Organization of the United Nations., 2018; Krachmer et al., 2017).

In the tropical region of northwest Africa, rice is the most consumed cereal at a
regional level, particularly in countries such as Senegal, Guinea-Bissau, Guinea Conakry,
and The Gambia (Kyle, 2015). These countries have a specific rice production system
linked to the mangrove forests of the coastal areas, designated as mangrove swamp rice

production systems (MSRPSs).

An MSRPS results from the slashing of the mangrove trees and the construction of
dikes for the creation of paddies (Ukpong, 1995). Thus, MSRPSs have been pointed out
as the main cause of mangrove deforestation in Guinea-Bissau (Garcia del Toro and Mas-
Lopez, 2019; Temudo and Cabral, 2017). Among the West African countries practicing
mangrove swamp rice cultivation, Guinea-Bissau has the largest area occupied by this
farming system (Hawthorne, 2001; Temudo, 2011; Temudo and Cabral, 2017) and the
highest total production. This distinctive agro-fishing livestock farming system is based
on the development of expertise (for dike and dam construction and maintenance, water
management, control of soil fertility and toxicity, and selection of rice varieties) and the
intensive mobilization of labor (e.g., for land clearing of mangroves, the construction of
dikes and canals, soil desalination, and plowing) at certain periods of the crop cycle
(Hawthorne, 2001; Linares, 1981; Martiarena and Temudo, 2023; Temudo, 2018; Van
Ghent and Ukkerman, 1993). Both the construction of dikes and bunds that delimit the

plot and soil tillage are undertaken manually using a long iron-tipped wooden plow.
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Rainfall is the only source of water to meet crop water needs and to flush salt from
the soil profile (Ecoutin et al., 1999; Espirito-Santo, 1949; Schwarz, 1993; Temudo,
2011). Therefore, rice is grown during the rainy season (July to November) when the
planting sites become suitable for the rice plant, namely, the salinity has reduced to
tolerable levels for rice varieties (Ecoutin et al., 1999; Tesio et al., 2021). This makes
plant growth difficult (Baggie et al., 2018; Ukpong, 1995; van Oort, 2018) and leads to a
large variability in rice productivity across the country. However, the rainfall impact
depends on both its annual value and its distribution (Davidson, 2009; Mendes and
Fragoso, 2023). Climate change and poor water management have led to desertification
and the abandonment of many fields, which have become infertile and have high salt

concentrations (Andrieu, 2018; Raimundo Lopes et al., 2022; Temudo and Cabral, 2023).

Very few field studies on soil characterization and water management have been
carried out on the MSRPS (Dossou-Yovo et al., 2022; Thiam et al., 2019). These soils
have very particular physical and chemical properties because, as stated above, they were
previously occupied by mangroves and flooded with brackish water. Furthermore, the
water management of an MSRPS is mainly based on the accumulation of rainwater

(Andreetta et al., 2016; van Oort, 2018).

The dimensions of plots are of great importance as they facilitate the harvesting of
fresh water from rainfall, which is crucial for plowing, salt leaching, cation solubility, and
optimal rice growth (Van Ghent and Ukkerman, 1993). The dimensions of the plots
observed in one region should not be extrapolated to the national level, as there are
different cultural practices and knowledge gaps regarding soil, water, and salt
management. For example, in years and regions with limited rainfall (Mendes and
Fragoso, 2023), farmers face the challenge of accumulating enough fresh water to manage

their plots. Additionally, as farmers explore new cultivation areas, they change the size
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of the plots, resulting in increased variability. Therefore, to ensure optimal soil and water
management and effective salinity control, it is essential to have a detailed understanding
of the plot dimensions at local and regional scales, rather than making generalized
assumptions without empirical basis (Dexter and Bird, 2001). Although MSRPSs are
dominant in coastal areas of Guinea-Bissau and Senegal (Casamance) (Linares, 1981;
Penot, 1995), there is still a lack of comprehensive information on the specific regional

dimensions of these structures.

The biophysical characterization of the MSRPS is an urgent need, with the aim to
improve rice production, as suggested in the companion article Garbanzo et al. (Garbanzo
et al., 2024). This involves studying its physical, biological, and chemical components to
understand how they interact in a particular environment. Thus, this approach examines
various elements, such as soil properties, climate, water availability, plant genetics,
biodiversity, and land-management practices (Hongliang Fang et al., 2005; Martinez-
Lopez et al, 2021; Nambiar et al.,, 2001; Singh et al., 2008). The biophysical
characterization of the MSRPS serves as a strategic approach to implementing
development interventions from multiple perspectives with the goal of establishing a
sustainable and productive system. The development of cropping diagnostic tools for
efficient water and soil management represents the first step toward improving rice
production (Bos et al., 2006; Ukpong, 1997). The national characterization of MSRPS in
Guinea-Bissau can provide insights into the different ways in which they can become
better adapted to local agroecological conditions in times of climate change
(Merkohasanaj et al., 2022; Temudo et al., 2022). Additionally, the development of
geospatial distribution maps (Fandé et al., 2022) for specific soil management variables
could be helpful in scheduling manual soil preparation tasks. This could promote a more

systematic approach to agriculture and rice production that is adapted to the micro-
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climatic diversity of the country (Sylla et al., 1995). Therefore, characterizing parameters
such as the techniques used in the construction of plots and dams and the soil physical
parameters could provide an effective strategy for adapting to climate change by
improving water harvesting, reducing rainfall needs, and mitigating desertification in the

coastal villages of Guinea-Bissau.

Soil consistency limits play an important role in soil tillage, i.e., the preparation of
the soil for growing crops. It determines the workability of the soil, and farmers’
knowledge of it allows them to understand how easily the soil can be manipulated,
shaped, and cultivated (Utomo and Dexter, 1981). It helps in deciding the right time to
till the soil (Cresswell et al., 1991; Obour et al., 2017; Sharma and Bora, 2003). This can
also prevent soil compaction, as working beyond the plastic limit can change the soil
structure, making it more susceptible to compaction, and reducing the porosity, which has
a negative impact on root growth and water infiltration (Arvidsson and Bolenius, 2006;
Boekel and Peerlkamp, 1956; Keller et al., 2007; Keller and Dexter, 2012). Proper
understanding and management of soil consistency limits contribute to the creation of an
ideal seedbed. This facilitates seed germination, root growth, and overall plant
development. Essentially, knowledge of soil consistency limits enables more informed
decisions regarding the timing, depth, and intensity of tillage operations, ultimately
contributing to improved soil quality and better crop yields. Soil consistency limits refer
to the different moisture contents at which the soil behaves differently (Haigh et al.,

2013).

Based on the relationships described above and the research gaps identified in the
literature (e.g., Garbanzo et al., (2024) (Chapter 2); Martiarena and Temudo, (2023)), the
present study aimed to contribute to the biophysical characterization of the MSRPS in the

north and south of Guinea-Bissau in order to improve the understanding of the soil-water—
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salinity relationship for optimized plot management. Specifically, our aim was to (i)
estimate the water harvesting efficiency of the plots in the north and south of Guinea-
Bissau; (i) characterize the unevenness of the bottom of the plots, which leads to
salinization spots; and (iii) create soil consistency maps to provide farmers with a tool to

prioritize sites with optimal conditions for tillage.

3. Materials and Methods

3.1. Location and Main Characteristics of the Study Sites

The research presented in this paper was conducted between 2021 and 2023 in two
regions of Guinea-Bissau (GB). Located in West Africa, GB covers an area of
approximately 36,125 km? and is bordered by Senegal to the north, and Guinea Conakry
to the east and south (Figure 3.1). Two case studies were selected, one in each region.
The Elalab case study was located at 12°14'48.5" N, 16°26'30.3” W in the S. Domingos
administrative sub-region of Cacheu, which is representative of the “Diola” and “Baiote”
ethnic groups’ techniques. The Cafine-Cafal case study was located at 11°12'40.4" N,
15°1026.7" W in the Tombali region, which is representative of the “Balanta” ethnic
group techniques (Figure 3.1). Both sites present elevations from zero to two meters

above sea level.
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Figure 3.1. Locations of Guinea-Bissau and the study sites Elalab and Cafine-Cafal in
the north (S. Domingos, Cacheu) and south (Tombali) of the country,
respectively. The maps show points representing the locations where soil

samples were taken for physical and chemical analysis.

According to the Koppen climate classification (Beck et al., 2018), the climate in
these regions is AW, which is a tropical monsoon climate with heavy rainfall during the
wet season, which usually lasts from June to October. The coastal zone presents an
average annual rainfall between 1500 and 2500 mm (Mendes and Fragoso, 2023) and
annual average temperatures range from 24 °C to 27 °C (Sambu, 2003). The temperature
regime is characterized by a low annual variation, with May being the hottest month (29

°C) and January the coldest one (25 °C) (Mendes and Fragoso, 2023).
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The agroecosystem has been classified as a rainfed wetland rice ecosystem,
particularly within the sub-ecosystems prone to drought and flooding (Balasubramanian
et al., 2007). These are characterized by high salt concentrations, which limits rice
cultivation to periods when freshwater storage conditions allow for plant growth. In our
case studies, samples were collected and observations were made on the entire mangrove
swamp rice area (paddies), particularly the associated mangroves (“bolanha doce™) and
tidal mangroves (“bolanha salgada”). There are two traditional systems of rice swamp
cultivation in GB the inland freshwater swamp fields (“bolanha doce”) and mangrove
swamp (“bolanha salgada”). Both systems refer to rainfed rice cultivated with a
permanent depth of water (permanently flooded paddies) until or almost until the end of
the rice cycle. The freshwater swamps (“bolanha doce”) where rice is cultivated are
located in inland valleys where there is a shallow water table or an impermeable soil layer
that allows for water storage, and thus, assures fresh-water harvest. Differently, mangrove
swamp rice (“bolanha salgada”) is characterized by the former presence of mangrove
forests invaded by the tides over the years in a fraction of or the whole area of the rice
fields, thus leading to a high concentration of salts in the soils, as described in the

companion paper Garbanzo et al. (Garbanzo et al., 2024).

The soils in the MSRPS areas were included in the orders of the Inceptisols and
Entisols according to the Soil Taxonomy—USDA (Teixeira, 1962). These soils were
formed by alluvial fans that resulted from tidal sedimentations (Marius and Lucas, 1991;
Schoeneberger et al., 2012; Soil Survey Staff., 2022a; Sylla, 1994). They present a Ustic
moisture regime, as they are dry for at least 90 cumulative days in a normal year (Soil
Survey Staff., 2022a). Originally, they were mangrove soils that were converted into rice
production fields through anthropogenic activities after three to five years of preventing

seawater intrusion by building dikes around the planting sites.
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3.2. Experimental Observations and Data Collection

Using geographical information system software (QGIS), polygons were generated
to define the rice production areas in Cafine-Cafal and Elalab. Transects were used to assess
plots and to delimit the main dikes of the paddies. Once the geographic coordinates of the
site were determined, polygons were generated for delimiting the paddies (“Bolanhas’)
used for cultivation. Landsat satellite images were used to identify plots and accurately
delineate the bunds, enabling the determination of their respective areas. These images were
chosen randomly to provide comprehensive coverage of different paddy sites, with a
meticulous recording of 100 observations (images) for each study site. Figure 3.2 shows an
image obtained by a drone, illustrating the identification of plots within specific paddy sites,

along with the delineation of ridges, furrows, and bunds utilized for rice production.

Figure 3.2. Plots in Mangrove swamp rice in Elalab, Guinea-Bissau. Identification of (a)

plots, (b) paddies or “Bolanhas”, (c) main dikes, (d) ridges, (e) furrows, and (f)
bunds.

In order to generate a systematic sampling within a combined area of 1435 ha, a
grid of 183 sampling points in Cafine-Cafal and 99 sampling points in Elalab was added
to the maps of the rice production areas (Figure 3.1). The “Cartodroit” application
(version V0.61.2 10166) created by the “Instituto Técnico Agrario de Castilla de Leon”

was used for this purpose, as it works in areas without an internet connection. Vector
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raster layers were generated in Sqlite format to locate the points within the rice production
zones. The sampling points were uploaded to a GPS-equipped Android smartphone to

precisely identify and locate points within the fields.

Soil samples (282) were collected at each grid point using an auger and shovel at a
depth of 0 to 25 cm. The samples were placed in plastic bags and labeled for identification
for further processing at the Soil and Water Laboratory of the Ministry of Agriculture and
Rural Development of Guinea-Bissau. The soil consistency analyses were conducted in
Guinea-Bissau, whereas the soil chemical analyses (Na, Ca, Mg, K, Al, Fe, pH, electrical
conductivity (EC), and exchangeable acidity) were performed at the Soil and Foliar

Laboratory of the Agronomic Research Center, University of Costa Rica.

Several measurements were taken in 60 randomly selected plots at each study site
during the soil preparation phase (July and August) in order to characterize: (i) the area
of the plots, (ii) the area exposed for rice cultivation (ridges), and (iii) the topography of

the bottom of the plots.

The sizes of the ridges and the areas of the plots were evaluated in both study sites.
The perimeters of the plots were measured with a scale-meter and the areas were
quantified. Additionally, the dimensions of three ridges within each plot were measured

to quantify the area exposed for rice planting.

The uniformity of plot depths was assessed during the months with the highest
rainfall (August to September). The depths were determined by measuring the depth of
water inside the plot (waterlogging height) at different points (Figure 3.3) using a vertical

scale meter, yielding 180 measurements for each study site.
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Meteorological data was collected during the experimental years in two automatics
meteorological stations (ATMOS-41 and ZL6 datalogger): one in the Cafine-Cafal study
site (11°13'0.588” N, 15°10'32.358” W) and the other in Elalab (12°14'47.54" N,

16°26'36.424" W). Data included precipitation, maximum, and minimum temperature.

b*

G F
H I
A B

Figure 3.3. Designated location for measuring the water depth within the plot. (a*) Drone
photo of a plot in Cafine-Cafal and plot-measuring position. (b*) Conceptual

diagram of measuring position.
3.3. Data Treatment
3.3.1. Water Harvesting Efficiency
The water-harvesting efficiency (WL was calculated (Equation 3.1) based on the

total rainfall recorded during the 2021 and 2022 rainy seasons, as well as the plot

dimensions.

pa X pn X tr

WLef x 100 (Eq.3.1)

~ wl X pa x pn

where WL.sis the water harvesting efficiency of the plot (%), pa is the plot area (m?), pn
is the number of “plots numbers per ha” (n), # is the annual rainfall (m m 2 year '), and

wl is the waterlogging height (m).
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3.3.2. Soil Consistency and Chemical Analysis

The soil consistency was evaluated using the commonly known methodologies for
identifying the Atterberg limits (ASTM Committee D4318-17 on Soil and R Rock, 2010;
Casagrande, 1958; Keller and Dexter, 2012; Sowers, 1965). For soil consistency
determinations, soil samples were air-dried for one month, and sub-samples of 150 g were
prepared to determine three consistency limits: the liquid limit (LL), which is the moisture
content at which soil transitions from a plastic state to a liquid state (becomes semifluid);
the sticky limit (SL), which represents the soil moisture at which the soil no longer adheres
to a steel spatula; and the plastic limit (PL), which is the minimum moisture content at

which soil remains moldable.

In order to quantify the soil consistency limits, each sample was individually
processed as follows: first, the plastic limit (PL) was estimated using the “thread rolling
test” in which a square ceramic plate was used to form a 3 mm thread. Second, 50 g of
soil was mixed with water until a paste was formed, and then the adhesion was tested with
a spatula in order to obtain the sticky limit (SL) (Haigh et al., 2013). The liquid limit (LL)
was then determined using the long-validated methodology developed by Cassagrande
(ASTM Committee D4318-17 on Soil and R Rock, 2010; Casagrande, 1958; Keller and
Dexter, 2012; O’Kelly et al., 2018; Sharma and Bora, 2003; Sivakumar et al., 2015;
Sowers, 1965). Finally, the gravimetric moisture content was determined in subsamples

collected for each consistency limit.

Soil chemical analysis was carried out using extractions with ammonium acetate
for Na, Ca, Mg, and K and with ammonium oxalate for Al and Fe. The extractions were
analyzed using inductively coupled plasma mass spectrometry to quantify the

concentration of elements in each soil sample. In addition, the pH (water), the EC (1:2),
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and the soil exchangeable acidity were determined. Each soil analysis was conducted in

accordance with the Soil Survey Staff methodology (Soil Survey Staff., 2022b).

3.3.3. Statistical Data Analysis

The data collected were analyzed separately for each study site. Linear regression
analysis (Equation 3.2) was used to analyze the correlations between the variables total
plot area, rice planting areas on ridges, number of rice production plots, and paddies area.
A box plot was also created to analyze the soil consistency results. In addition, analysis
of variance and multiple comparisons using Tukey’s test (a. = 0.05) were performed to
determine statistical differences between soil consistency results. To perform the above

procedures, the RStudio Sofware version 1.4.1103, 2021 (Posit team, 2023), was used.

yi= 0+ flyi + ei (Eq. 3.2)

where yi is the estimated response (rice planting area on ridges (m?), number of rice
production plots (7)), S0 is the estimated intercept in the regression, f1 is the estimated
slope in the regression, yi is the independent variable (total plot area (m?), area (ha)), and

ei represents the residual error.

A geostatistical analysis was performed using the Geostatistics for Environmental
Science (GS+) program. First, the semi-variograms of the soil consistency distributions
were analyzed, and the best-fitting model was estimated (Table 3.2). Second, the best-
fitting models for the Z variables (soil consistency parameters) were created, which were
then interpolated using the ordinary Kriging method. Third, the geostatistical analysis
tool was used to perform cross-validation through resampling methods (leave-one-out

cross-validation “LOOCV”) on the previously interpolated information. Fourth, residual
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errors “e;” calculated for each observation point were extracted and subtracted from the
original value of each observation point to obtain the predictive capacity of each process.
Fifth, another geostatistical cross-validation (holdout method “HM”) was carried out
using 80% of the data to calibrate the models and the other 20% of the data to validate

the model as an interpolation result.

This process involved removing one data point from the original group and
predicting the value of the variable at the location of the removed data point.
Subsequently, the root-mean-square error (RMSE), mean absolute error (MAE), and
Pearson’s correlation coefficient (p) were computed to validate the models according to
the recommended methodology (Adhikari et al., 2013; Garbanzo-Ledn et al., 2017;
Mosleh et al., 2016; Poggio and Gimona, 2017; Zeraatpisheh et al., 2021). Finally, the
calculated parameters were evaluated using spatial autocorrelation, which was
determined using the “Global Mogan’s I” statistic, the Z-score, and P-value calculations
for each soil consistency parameter (Table 3.1). The interpolation procedures were
performed using the ArcMap 10.8.2 Geostatistical Software and RStudio version

2023.09.1 Build 494 (Posit team, 2023).

Table 3.1. Geostatistical parameters used to calculate the interpolation of soil consistency

limits in Cafine-Cafal and Elalab study regions in Guinea-Bissau.

Samples Model Nugget Sill Range
Cafine-Cafal map interpolation (m)
SL * Exponential 22.1 44.2 3192
LL Exponential 78.0 156.1 1515
PL Spheric 27.7 73.7 8110
Elalab map interpolation (m)
SL Linear 158.7 158.7 1470.7
LL Linear 466.9 466.9 1470.7
PL Linear 47.72 47.72 1470.7

* SL—sticky limit; LL—Iliquid limit; PL—plastic limit.
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4. Results

4.1. Precipitation and Temperature

Figure 3.4 shows the meteorological data collected from both study sites from 2021

to 2023. Less rainfall was reported at the Elalab study site compared with the Cafine-Cafal

site. The sites presented annual rainfalls of 1119-1749 mm and 2476-2679 mm,

respectively. The months with the highest rainfall in both years were July, August, and

September. The temperature ranged from 22 to 32 °C for both sites. In March and April,

there were greater fluctuations between the maximum and minimum temperatures at both

sites.
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Figure 3.4. Rainfall and temperatures for Cafine-Cafal (A, A1) and Elalab (B, B1) case
study sites from April 2021 to January 2023. The black dots represent the daily

average temperature, while the lines illustrate the smoothed curve for

maximum, minimum, and average temperatures.
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4.2. Soil Chemical Properties

The chemical concentration of nutrients in the areas showed considerable
variability (Table 3.2). The coefficient of variation ranged from 47% to 200% for the Ca,
Mg, K, Na, Al, and Fe concentrations. The soils exhibited a pH above 4.4. The Cafine-
Cafal soils may present problems associated with exchangeable acidity (>0.5 cmol(+)
kg™ '), which can affect nutrient availability, hinder root growth, and impact the overall
health of crops (Espinosa and Molina, 1999; Kunhikrishnan et al., 2016). Furthermore,
the average cation-exchange capacity (CEC) was 8.98 cmol(+) kg ! in Elalab and 24.88
cmol(+) kg'! in Cafine-Cafal, with values of Na between 0.11 and 234.96 cmol(+) kg .
The latter is a substantial amount of sodium, potentially indicating the need for soil
amendments or management practices to ensure good conditions for plant growth (Kirkby
et al., 2023; Espinosa and Molina, 1999; Grattan and Grieve, 1992). The notable
percentage of saturation bases (SB) indicates high cation concentrations (>175.7 %),

which may be due to a high sodium concentration in some sites and a low CEC.
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Table 3.2. Soil chemical analysis results for the Elalab and Cafine-Cafal study sites, as measured from samples collected at the beginning of the

rainy season between May and June 2021 and 2022.

Site Statistic pH Exchangeable Acidity Ca Mg K Na CEC* SB* Al Fe

H20 (KC11M) Extractable NH4OAC (pH 7.0) (NH4)2C204
cmol(+) kg! %

Mean 59 0.18 3.68 13.66 249  75.72 8.98 100 0.04 0.22

Median 6.0 0.10 289 1077 196  59.10 7.02 100 0.03 0.16

Elalab Min 3.7 0.07 0.50 0.17  0.02 0.11 0.510 541 0.008 0.02
n=99 Max 7.8 2.50 16.89 16.89 9.84 429.00 31.72 100 0.12 1.10
Std. dev  1.13 0.28 329 11.89 238 79.32 7.58 100  0.027  0.22

Coef. var  0.19 1.59 0.89 087 0.96 0.99 0.84 1.4 0.77 1.00

Mean 4.4 1.12 3.51 1299  1.95 25.75 24.88 100 0.31 0.86

Median 4.2 0.62 3.19 1247 1.58 16.49 25.46 100 0.11 0.74

Cafine-Cafal Min 3.2 0.07 045 0.09 0.04 0.10 9.25 3.7 0.04 0.13
n=183 Max 7.7 10.90 11.43 33.57 5296 23496  42.07 100 5.65 14.71
Std. dev  0.60 1.38 .72 6.05 3.92 31.8 4.14 100 0.65 1.09

Coef. var  0.14 1.24 049 047  2.00 1.24 0.17 0.9 2.13 1.26

* CEC = cation exchange capacity; SB = percent base saturation ({[Ca + Mg + K + Na] / CEC} x 100).
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4.3. Effective Planting Areas and Number of Plots
Figure 3.5 shows the effective planting area (planting area of the ridges) as a
function of the plot areas. The total ridge area was 9.5% greater in the northern study sites
(Elalab study site) compared with the southern ones (Cafine-Cafal study site) in Guinea-
Bissau. In Cafine-Cafal (Figure 3.5A), the planting area was 42.3%, while in Elalab
(Figure 5B), it was 51.8% (r* > 0.9, p <0.001). The furrow area (Figure 3.2) varied
between 48.2% and 57.7% between the two study sites when comparing the plots’ area

with the ridges’ rice planting area.
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Figure 3.5. Effective rice-planting area on ridges (RA) evaluated in MSRPS plots in (A)
Cafine-Cafal and (B) Elalab case study regions.

The number of rice production plots per hectare was seven times higher in the north
than in the south of Guinea-Bissau (Figure 3.6). The results showed that Elalab had

approximately 53 plots per ha (10,000 m?), while Cafine-Cafal had only about 7 plots per
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ha. When examining larger areas (>1 ha), there was high variability in the plots, as shown

by the linear regressions (r* = 0.72—0.75, p < 0.001).
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Figure 3.6. Estimation of the total numbers of plots per hectare in the MSRPSs of (A)
Cafine-Cafal and (B) Elalab in Guinea Bissau.

4.4. Water-Harvesting Efficiency

As described in Section 2.2 (Experimental Observation and Data Collection), water
depths were measured for nine points, as shown in Figure 3.3. Cafine-Cafal exhibited
greater variation in waterlogging depths compared with Elalab (Figure 3.7), but the water
depths in Elalab plots showed greater homogeneity. On average, a waterlogging depth of
37 cm was observed in Cafine-Cafal, while Elalab had a depth of 23 cm. The water-
harvesting efficiencies (WL.) were 15 and 16% in Cafine-Cafal and Elalab. This approach
quantified the hydrological effectiveness of a system by evaluating its water harvesting
capacity relative to annual rainfall within the defined planting area of the plots. It is

noteworthy that the recorded rainfall in the southern region during the 2021-2022 period
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amounted to 1411 mm in Elalab and 2426 mm in Cafine-Cafal (Figure 3.4). Thus, the
water-harvesting efficiency was found to be similar due to the considerable number of plots

in Elalab within one hectare.
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Figure 3.7. Variations in the waterlogging depth (August—September, peak rainfall) and
water harvesting efficiency based on the total rainfall (WLe) in the 2021 and

2022 rainy seasons.

The water depth is a proxy for the topography of the plot floor. The bottom of the
plots was more heterogeneous in the south of the country. Spatial analysis of the water
levels in the southern plots revealed that the center had a shallower water depth (14.4 cm),
while the edges (near the boundary) had greater depths and water accumulations (<50.95
cm) (Figure 3.8A). Furthermore, water runoff showed a lateral distribution, with greater
intensity in the corners of the plots. In contrast, in the Elalab study site, a more
homogeneous distribution was found in the water level variation across the plots (Figure
3.8B). Thus, the water depth ranged between 17.6 cm and 26.6 cm and had a slope gradient

directed toward one side of the plots.
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Figure 3.8. Radial basis function model used to estimate water level variation and water

movement directions in the MSRPS plots in Guinea-Bissau. Depth of the water
(A) and slope gradient (A1) in Cafine-Cafal. Depth of the water (B) and slope
gradient (B1) in Elalab.

4.5. Soil Consistency Limits

The soil consistency analysis shows that the plastic limit (PL) was higher for the
southern study site than in the north. In Cafine-Cafal, PL corresponded to a gravimetric
moisture content (6g) of 35.5% (Figure 3.9), which was statistically different (p < 0.01)
from both the liquid limit (LL) (8g = 65.4%) and the sticky limit (SL) (85 = 29.8%). In
Elalab, the PL was reached with a 0; of 18.6%, and there was no statistical difference
from the SL (6 = 16.7%). However, the LL showed a significant difference (p < 0.01)
compared with the other limits (6; = 33.5%). The effort required for soil tillage in northern
soils was likely significantly lower under conditions exhibiting less plasticity, as opposed

to the plasticity condition observed in Cafine-Cafal.
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Figure 3.9. Soil consistency limits (including sticky limit [SL], plastic limit [PL], and
liquid limit [LL]) in rice paddies for (A) Cafine-Cafal and (B) Elalab study
sites in Guinea-Bissau. * Mean values with the same letter did not differ

significantly according to Tukey’s test (o = 0.05).

Within the context of the spatial analysis, the consistency limits were found to be a
regionalized variable, that is, they showed a pattern across a geographic area. This is
shown by the geo-statistical interpolation parameters presented in Table 3.3. The
geospatial correlation analysis demonstrated a global Moran’s 1 index < 0, indicating
spatial autocorrelation due to the high similarity of nearby points (Chen, 2013). The
variance in the consistency parameters was found to have a mean value of 0.002 in both
study sites. The variance in Elalab showed a mean value ranging from 0.001 to 0.01. The
clustering patterns were observed to be random (p = 0.01-<0.001). Therefore,

interpolation indicates that they were related to spatial autocorrelation, which means they

were random.

107



Table 3.3. “Global Moran’s I”” evaluation and cross-validations calculated for soil consistency limits interpolation in Cafine-Cafal and Elalab in

Guinea-Bissau.

Global Z
Samples oba Variance , p-Value* MAE RMSE P MAE RMSE P MAE RMSE P
Moran’s I Punctuation
Cafine-Cafal Maps Interpolation LOOCV LOOCV—e; HM—e;
SL 0.182 0.002 3.964 <0.001 0.007 0.03 093 0.004 0.005 0.99 0.02 0.06 0.78
LL 0.159 0.0006 3.422 <0.001 0.02 0.04 0.94 0.01 0.02 0.99 0.05 0.08 0.76
PL 0.149 0.002 3.282 <0.001 0.02 0.04 0.90 0.01 0.02 0.98 0.04 0.07 0.73

Elalab Maps Interpolation

SL 0.22 0.002 4.502 <0.001 0.05 0.09 0.66 0.06 0.09 072 005 007 0.70
LL 0.115 0.003 2.333 0.01 0.10 0.14 0.75 009 013 0.80 0.10 0.13 0.79
PL 0.123 0.002 2.516 0.01 0.03 0.05 0.65 0.03 0.05 071 0.02 0.03 0.68

SL—sticky limit, LL—liquid limit, and PL—plastic limit. * A probability of less than 2% that the clustered pattern could be the result of a random likelihood.
LOOCV—Ieave-one-out cross-validation. HM—holdout method (cross-validation). e;—residual errors. RMSE—root-mean-square error. MAE—mean

absolute error. P—Pearson’s correlation coefficient.
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The predictive ability of the interpolation was improved by subtracting residual
errors "e;” associated with previously interpolated values for each observation. It was
found that after subtracting the residual errors, the LOOVC showed better parameter
prediction (MAE and RMSE > 0.13) for each study site compared with the HM (Table
3.3). However, Elalab showed less accurate consistency limits prediction compared with
Cafine-Cafal using the best predictive model. The average correlation between the
observed and interpolated values showed that Cafine-Cafal had a rho (P) ranging from
98-99%, while Elalab showed a P between 71 and 80%. Therefore, a prediction model
employed for the construction of a soil consistency map used LOOCV—e;. This model
could efficiently predict the specific locations or plots where farmers could identify the

site for first plowing activities.

The geospatial distribution of soil consistency limits showed the sites with the
highest plastic limit (PL) in the rice fields of Cafine-Cafal and Elalab (Figure 3.10).
Paddies (Figure 3.2) exhibited a heterogeneous distribution in soil moisture contents, with
a significantly lower PL found in the associated mangrove fields. The maximum PL was
57% in Cafine-Cafal and 28% in Elalab, suggesting that higher values of gravimetric
moisture are suitable for manual soil preparation. The liquid limit (LL) range determined
in Cafine-Cafal was between 35% and 86%, while in Elalab, these values ranged between
19% and 62%. The distribution of gravimetric moisture corresponding to each
consistency limit on the maps shows the locations where the soil moisture suitable for

plowing was reached more quickly.
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Figure 3.10. Interpolation of soil consistency limits, including the sticky limit (SL),

plastic limit (PL), and liquid limit (LL), in MSRPSs of Cafine-Cafal (A) and

Elalab (B), Guinea-Bissau.
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5. Discussion

The highly spatio-temporal variation in rainfall distribution (Figure 3.4) has a major
impact on the MSRPS soil tillage calendar. While the total amount of rainfall (mm) has
increased during recent decades, the rainy season often starts later and ends earlier, and
there are many long dry spells. At the same time, rainfall is concentrated in fewer days,
and heavy precipitations may occur, which can lead to flooding, dike breaches, brackish
water entering the plots, and frequent harvest failures (Mendes and Fragoso, 2023). Thus,
a high annual rainfall no longer guarantees a correspondingly high rice productivity. Until
three decades ago, farmers used to sow the first nurseries between May and June, but
today they have to wait until July or even August (Figure 3.4), depending on the location
(Dossou-Yovo et al., 2022). Then, the MSRPS depends on the amount of accumulated
rainfall in the paddies and good water management (Fandé et al., 2022; Santos and
Mourato, 2022). Normally, soil tillage cannot begin until the paddies are sufficiently
filled with rainwater (Figure 3.10) to leach or dissolve the salt, but according to soil
consistency (Figure 3.9), it may not be necessary to wait until the plot is full of water.
However, farmers drain the water (southern study site) in order to work the soil more
easily and with less physical effort. However, the paddies must be filled with fresh water

again so that rice can be transplanted or directly sown.

Rice production requires greater adaptability due to rainfall patterns in GB, and
agricultural practices in the MSRPS need to be adapted to biophysical characteristics
(Figure 3.10). Farmers usually start their cultivation on the plots given to them by their
families (grandparents or parents) for soil preparation and have significant practical
knowledge of MSRPSs (Temudo, 1998). Many of these plots in both study sites (Figure
3.1) were located near the mangrove boundaries (tidal mangroves), where they require

higher soil moisture due to a high Na* concentration (Table 3.2). Likewise, in many cases,
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these sites had a clay texture and required higher rainfall in order to overcome the
plasticity limit, and thus, facilitate soil tillage. With changing rainfall patterns and a short
rainy season window, farmers need to adapt and start tilling on plots that require less
rainfall or soil moisture, such as plots with a loam or sand texture (Unger, 1984). In this
way, they can use these plots to plant nurseries and initiate the rice growth cycle since the
species Oryza glaberrima and O. sativa require approximately 90 to 135 days from
sowing to harvest (Linares, 2002; Miranda, 1993; Penot, 1992; Temudo, 2011; Tesio et
al., 2021). This paper proposes an adaptation strategy that allows farmers to identify the
sites where it is appropriate to initiate soil tillage (Figure 3.10). This will enable them to
promote agriculture that is better adapted to rainfall patterns, which are likely to be more
variable in the medium and long term. This is important for sustainable agriculture in GB

given the climate variability (Temudo, 2011).

The water management techniques used in Cafine-Cafal and Elalab differed (Figure
3.5), but both had similar water-harvesting efficiencies (Figure 3.7). When analyzing the
Elalab study site (“Diola” and “Baiote” systems), it was clear that there was a much higher
concentration of plots in a single hectare than in the southern study site of Cafine-Cafal
(“Balanta”) (Figure 3.6). The smaller paddies in the northern region (Elalab study site)
allowed for better management of the scarce water supply. For example, the average rainfall
in the 2021 and 2022 rainy seasons was 1454 mm in the Elalab study site and 2578 mm in
Cafine-Cafal (Figure 3.4). These results are consistent with those of other researchers
(Mendes and Fragoso, 2023). Although the plots may be larger in newly opened paddies,
when Elalab farmers observed water accumulation in some areas, they divided them into
two or more smaller plots (Figure 3.5). Smaller plots allowed for a more even distribution
of water logging across the soil surface, both at the beginning and end of the rainy season

(Figures 3.7 and 3.8). This meant that the desalinization of the paddies occurred more
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evenly and the amounts of water within the plots could be controlled more efficiently
(Baggie et al., 2018; Dossou-Yovo et al., 2022; van Oort, 2018). In contrast, Cafine-Cafal
case study plots were seven times larger, and water management was less efficient despite
the higher rainfall rates in the south of the country (Figure 3.6). This could lead to more
heterogeneous runoff within plots, resulting in hot spots of salinization in the center of the

paddies (Figure 3.8).

The efficiency in the use of production space was also higher in the north of Guinea-
Bissau than in the south. The Elalab case study achieved greater homogeneity of their
ridges and furrows by using smaller plots (Figure 3.5) because the length of the ridges
was shorter compared with those in the south (“Balantas”). On small plots, ridge
dimensions can be better controlled when farmers till the soil. Since the ridges cover a
larger area, farmers in the north could use four planting holes per row, while in the south,
they used three holes in a triangle. This meant that northern farmers (“Diolas” and
“Baiotes”) were making better use of the area. In summary, the Elalab case study showed
that the system had more efficient water management and labor use and was better
adapted to water stress conditions. In the future, there is a possibility that the strategies
implemented in the northern study sites will be effectively expanded to the southern

regions and serve as an adaptive response to decreasing rainfall conditions.

Plastic limits (PLs) determine the time at which tillage can begin in the MSRPS
fields (Figure 3.9). Currently, the agricultural calendar has a shorter time window, and
gravimetric soil moisture (0;) is a tool that can be used to help define the appropriate
moment and plots to start soil tillage each year. For this purpose, maps were modeled to
determine the paddy areas where producers could start soil preparation (Table 3.3) to take
advantage of the longest period of favorable conditions (high salt solubility) in the plots

(Figure 3.10). It was found that the Cafine-Cafal farmers could start soil preparation with
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a 0 = 36%, while in Elalab, approximately 0; = 20% was required (Figure 3.9). These
delineations provide farmers with valuable insights into the strategic management of soil
friability and ensure avoiding soil sticking to the manual plows that are commonly used
in MSRPS practices (Temudo, 2018, 2011; Tesio et al., 2021). This is consistent with
previous studies on soil workability and friability for agricultural production, which aim
to help farmers make decisions on tillage operations (Arvidsson and Bdlenius, 2006;
Keller et al., 2007; Keller and Dexter, 2012; Obour et al., 2017; Utomo and Dexter, 1981).
Therefore, soil consistency is a tool to make soil management more efficient and achieve
better water efficiency. However, it is the soil salinity that determines if it is possible to
start planting or direct sowing immediately after plowing (Baggie et al., 2018; Bos et al.,

2006; Dossou-Yovo et al., 2022; Sylla et al., 1995).

MSRPS infrastructures (bunds and dikes) are primarily designed for freshwater
accumulation rather than salt removal or drainage. The vast majority of farmers only drain
the water from the plots when they need to maintain a desired level of waterlogging
according to the height of the rice plants. Nevertheless, farmers in the Elalab case study
(“Diolas and Baiote™) prioritized plowing the soil under waterlogging conditions to
conserve the limited water availability (Figure 3.7). In addition to the additional physical
effort required for soil preparation, this practice allowed the dissolved salts to remain in
the water. This is in stark contrast with conventional irrigation systems, where many water
management calculations are designed to facilitate salt leaching and removal, particularly
in systems characterized by low rainfall but with greater availability of freshwater from
wells or rivers. Therefore, MSRPS cultivation in both the northern and southern regions
of Guinea-Bissau presents complex variability in the biophysical characteristics of rice

production areas, which pose major challenges.
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6. Conclusions

Rice production requires greater adaptability due to rainfall patterns in GB, and
agricultural practices in the MSRPS need to be adapted to biophysical characteristics. The
highly spatio-temporal variation in rainfall distribution has a major impact on the MSRPS
soil tillage calendar. This paper proposes an adaptation strategy that allows farmers to
identify the sites where they can initiate soil tillage. This will enable them to promote
agriculture that is better adapted to rainfall patterns, which are likely to be more variable in
the medium and long term. This is important for sustainable agriculture in GB given climate

variability.

It could be concluded that the water management techniques used in the north and
the south of the country differed, but both had similar water-harvesting efficiencies. The
smaller paddies in the northern region (Elalab study site) allow for better management of
the scarce water supply. Smaller plots allow for a more even distribution of water depths
across the soil surface, both at the beginning and end of the rainy season. This means that
the desalinization of the paddies occurred more evenly and the amounts of water within
the plots can be controlled more efficiently. In contrast, in the south, plots were seven
times larger, and water management was less efficient despite the higher rainfall rates,
which could lead to more heterogeneous runoff within plots, resulting in hot spots of

salinization in the center of the paddies.

Currently, the agricultural calendar has a shorter time window and gravimetric soil
moisture (0) is proposed as a tool to help determine the appropriate time and sites to start
tillage each year. Soil consistency maps were modeled to determine the plots where
producers could begin soil preparation to take advantage of the longest period of favorable

conditions (high salt solubility) in the plots. These delineations provide farmers with
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valuable insights into the strategic management of soil friability and ensure avoiding soil

sticking to the plows that are commonly used in MSRPS practices.

The comparative study of some biophysical properties between study sites
facilitated the identification of specific constraints hindering rice growth and productivity
due to salinity and water management. The key limitations identified that will guide our
future research were as follows: (i) The lack of an effective drainage system in the plots
resulted in the productivity of the plots relying solely on leaching and salt dissolution. (ii)
Irregularities in the topography of the plots could lead to a heterogeneous accumulation
of salts, leading to significant variability in rice production. (iii) Inadequate knowledge
of the chemical composition of salts and the physical properties of soil hindered the ability
to effectively address challenges related to managing soil alkalinity, toxicity, and acidity.
The MSRPS lacked maps that provide information on initial salinity conditions, and the
development of such resources could greatly improve decision-making processes,
particularly during periods of low rainfall. (iv) The MSRPS did not have a water—salt
balance that allowed for determining the optimal conditions for rice growth in both the

initial and final growth stages.
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Chapter 4

Advances in soil salinity diagnosis for mangrove
swamp rice production in Guinea Bissau, West
Africa

This chapter was published in Science of Remote Sensing.
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1. Abstract

Rice is one of the most important crops in many West African countries and has a direct
impact on food security. Mangrove swamp cultivation is the most productive rice system
in this area but is highly vulnerable to changes in rainfall patterns due to soil salinity.
Diagnosing and identifying areas of high salinity concentration are essential strategies for
adapting to climate change and mitigating its impacts. The aim of this study is to provide
a methodological approach to identify the causes of soil salinity and map the spatial
distribution of hypersaline areas, focusing on three case studies in Guinea-Bissau. At
three study sites in the north, center, and south of the country, 382 soil samples were
collected under initial conditions before rice cultivation. Indices derived from spectral
bands and soil texture raster of the Planet Scope project were used to calibrate the three-
machine learning based models: Random Forest (RF), Support Vector Machine, and
Convolutional Neural Networks. Chemical analysis of the soil revealed that Mg®* and
Na" were the extractable cations with the highest concentration in all three study sites.
The RF showed the highest accuracy for salinity prediction (R* = 0.84, MAE = 13.35 dS
m™, RMSE = 20.89 dS m™!, NRMSE = 2 %, BIAS = 0.45, PBIAS = 0.04 %), with
normalized difference salinity index (RNDSI, calculated with red edge). Silt raster,
normalized salinity index (NDSI), and normalized difference water index (NDWI) were
the main contributors in the predicted data for soil electrical conductivity of the saturation
paste extract (ECe, (dS m™). This approach produced a reliable approximation during
validation for the three study sites (R?> = 0.71 to 0.81, MAE = 10.81 dS m™' to 19.68 dS
m™, RMSE = 15.59 dS m™ to 29.23 dS m™, NRMSE = 36% to 51%, BIAS = -2.25 to
1.79, PBIAS =-5.73% to 5.81%), each exhibiting unique edaphoclimatic characteristics.
This study highlights the critical importance of diagnosing hypersaline sites to improve
agronomic management practices by introducing improved water management
infrastructures, conserving mangrove forests, and promoting regional ecological

resilience.
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2. Introduction

Rice (Oryza sativa L. and Oryza glaberrima Steud.) is one of the most important
staple foods in West Africa and plays a crucial role in the daily diet. In rural areas, it is
mainly grown by smallholders (FAO, 2018). Rice production in West Africa occurs in
four major agroecosystems (Balasubramanian et al., 2007) defined by their surface water
regimes such as dryland ecosystems (after slash-and-burn of forests or woodlands),
rainfed wetlands, deepwater, and mangrove swamps (after slashing the mangrove trees

and dike building).

In Guinea-Bissau (GB), the mangrove swamp rice production system (MSRP)
accounts for about 49% of the crop production area (The Republic of Guinea-Bissau,
2018). This system shows evidence of salinity as the land was formerly occupied by
mangrove forests and is vulnerable to saline seawater intrusion (Linares, 1981; Ukpong,
1997). Increased concentrations of soluble salts in the soil alter its physicochemical
properties and increase the osmotic potential. Therefore, the ability of rice plants to absorb
water is reduced, which in turn reduces the growth rate and ultimately leads to lower crop
yields (Garbanzo et al., 2024a). Because rice is sensitive to salinity stress (Ayers and
Westcot, 1985; Minhas et al., 2020), farmers rely on rainwater harvesting to dissolve and
leach salts accumulated in the paddies to make the site productive (Dossou-Yovo et al.,
2022; Marius and Lucas, 1991). Recently, desalination of paddy fields has become
increasingly difficult due to rainfall patterns affecting rice production (Mendes and
Fragoso, 2024; Temudo et al., 2022). In Guinea-Bissau, salinity problems are mainly
related to the hydro-saline balance, as salinity can affect both the beginning and the end
of the rice growing season (D’ Amico et al., 2024; Garbanzo et al., 2024b; Van Ghent and

Ukkerman, 1993). However, salinity is not present in all plots and occurs mainly in the
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plots near the mangroves (Garbanzo et al., 2024a), where poor drainage affects salt

leaching.

Poor diagnosis of saline sites hampers the development of agronomic management
plans, which are essential to ensure rice production and avoid yield losses (Wolanski and
Cassagne, 2000; Zenna et al., 2017). However, in GB, this diagnosis relies solely on
farmers’ local knowledge and practices, some of which are poorly adapted to socio-
environmental changes (Martiarena and Temudo, 2023). Furthermore, few studies have
been conducted to identify, characterize, and manage soil salinity in the MSRP, hindering
the development of alternative management solutions namely under climate variability
and climate change. For this reason, it is essential to develop tools tailored to the specific
characteristics of MSRP fields to improve the diagnosis and management of salinity in

this production system.

Tools for managing salinity in agricultural systems can use different types of
models, such as statistical and deterministic. Deterministic models provide precise and
predictable insights, as reported by Ramos et al. (2024), Stulina et al. (2005), and Van
Dam et al., (2008). However, their complexity and high data input requirements make
them more suitable for research rather than practical management in regions with limited

data and technical expertise.

In contrast, machine learning-based statistical models show significant promise for
diagnosing and managing salinity in mangrove rice fields (Sarkar et al., 2023; Xiong et
al., 2024). These models handle complex relationships and large datasets, and provide
accurate and adaptable predictions. Nevertheless, they face challenges related to data

requirements, interpretability, and technical demands. Combining these models with local
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knowledge and practices, as well as ensuring transparency and stakeholder engagement

can enhance their effectiveness in salinity management.

Using remote sensing images to feed machine-learning models for salinity
management in the MSRP areas provides significant advantages in large-scale, high-
resolution monitoring and cost-effectiveness. Satellite platforms such as Sentinel
(European Space Agency, European Union), Landsat (National Aeronautics and Space
Administration Agency, USA), MODIS (National Aeronautics and Space Administration
Agency, USA), PlanetScope (Planet, USA), and SAOCOM (National Commission for
Space Activities, Argentina) capture multispectral reflected energy and enable diagnosis
of surface properties, including vegetation changes, climatic variability, and soil
composition (Wulder et al., 2022). These images enable non-intrusive observation of vast
or inaccessible areas (Cawse-Nicholson et al., 2021; Salem et al., 2023). Calibration of
spectral reflectance creates robust diagnostic tools for analyzing spectral patterns and
changes over time (Martins et al., 2022; Pettorelli et al., 2005), crucial for informed
agricultural decision-making and understanding of site-specific characteristics affecting

crop production (Roy et al., 2019; Valman et al., 2024).

Spectral reflectance has been extensively studied and calibrated to diagnose soil
salinity in different agroecosystems using various algorithms (Hopmans et al., 2021;
Ivushkin et al., 2019; Metternicht and Zinck, 2003). Commonly used satellite indices are
the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Salinity
Index (NDSI), the Intensity Index (Int), the Salinity Index on Spectral Angle Mapper
(SAM), and the Salinity and Water Stress Index (SWSI), all of which are directly related
to soil or vegetation (Lopes et al., 2020; Tan et al., 2023). These indices must be calibrated
and validated with ground-truth salinity data to account for spatial variability and

atmospheric disturbances (Hadjimitsis et al., 2010; Pettorelli et al., 2005), ensuring
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accurate predictions (Liu et al., 2025; Ramos et al., 2020; Scudiero et al., 2015; Timm
and McGarigal, 2012). Proper calibration enhances the assessment of spatial variations in
soil salinity, which is crucial for effective management of agricultural systems (Bell et

al., 2001; Ivushkin et al., 2019).

Several machine-learning algorithms are nowadays available for calibrating indices
with ground truth data to generate predictive models (He et al., 2023; Mondal et al., 2019;
Naimi et al., 2021). Among the most popular are: (i) Random Forest (RF), an ensemble
learning method that uses statistical classification and regression techniques and creates
multiple decision trees with random variations to arrive at a single result (Breiman, 2001;
Latifietal., 2012; Liu et al., 2012); (i1) Support Vector Machine (SVM)), also a supervised
learning algorithm that uses regression and classification methods to try to find the most
accurate hyperplane to classify various features (Cortes and Vapnik, 1995; Decoste and
Scholkopf, 2002; Huan et al., 2009); and (ii1) Neural Networks (NNs), which are more
complex models inspired by the brain’s neurons and composed of layers with
interconnected nodes, including an input layer, several hidden layers, and an output layer
(Haykin, 1999; Rosenblatt, 1967). NNs establish an associated index or weight to form a
classification, relying on training data to improve predictions through self-learning
(Bishop, 1995; Farifteh et al., 2007). These algorithms enable the correlation of site
variables with different spectral indices to determine a spatial prediction model that best

fits the natural behavior of the data.

Diagnosis of soil salinity using indices calculated from satellite imagery and
environmental covariates has shown promising results through various supervised
learning algorithms. These include attempts to use SVM to calibrate the indices using
ground-truth soil salinity data (Abd El-Hamid et al., 2023; Liu et al., 2023; Yang et al.,

2023), RF (Kaplan et al., 2023; Yang et al., 2023; Zhao et al., 2023), and NNs (Pouladi
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etal., 2019; Zhang et al., 2023). Other approaches included soil physical parameters such
as soil moisture (Avdan et al., 2022), groundwater salinity (Chaaou et al., 2022), soil
texture (Golabkesh et al., 2021; Hossain et al., 2020; Liu et al., 2023; Shi et al., 2022; Sun
etal., 2022), and organic matter content (Shrestha et al., 2021) as variables; most of these
models were developed for regions in Asia and the Middle East. However, no predictive
model has been developed for the diagnosis of salt-affected soil in the tropical zones of
West Africa (Mondal et al., 2019). Developing a model to diagnose soil salinity is
essential to optimizing agricultural rice productivity, enabling precise resource
management, and supporting sustainable land use. This will help ensure food security and

environmental resilience to climate variability and change.

The aim of the study is to characterize the cations that contribute to soil salinity,
develop a predictive model to assess spatial distribution and provide recommendations
for soil salinity management in mangrove swamp rice cultivation in Guinea-Bissau. This
article describes the development of a tool leveraging a supervised machine learning
algorithm, that integrates satellite imagery with ground truth data. This tool can be used
with the same aim in other rice-producing areas with salinity problems and ultimately be

adapted to help select sites for mangroves restoration activities.
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3. Materials and methods
3.1.Location and main characteristics of the study sites

The research was conducted between 2021 and 2023 at the study sites of Elalab
(12°14'48.5" N, 16°26'30.3"W), Enchugal (12°02'52.0" N, 15°26'06.9" W), and Cafine-
Cafal (11°12'40.4" N, 15°10'26.7" W) in Guinea-Bissau (GB), West Africa (Figure 4.1).
The study sites are located in the coastal regions of Cacheu, Oio, and Tombali, where
MSRP is practiced. Historically, farmers in the upper part of the catena began growing
rice and gradually opened up new fields by clearing mangrove forests and building dikes
and ducts. In the specialized literature (Van Ghent and Ukkerman, 1993), the agroecology
of the upper fields is called associated mangroves (AM), and that of the fields closer to

the brackish water is called tidal mangroves (TM) (Garbanzo et al., 2024a).

12°0°N

11°0'N

Figure 4.1. Location and perspective of soil salinity problems in (A) Elalab in the north,
(B) Enchugal in the central region, and (C) Cafine in the south of Guinea-
Bissau, West Africa.
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According to the Koppen — Geiger classification, the climate is tropical monsoon
(AW), which indicates heavy rainfall during the rainy season (Beck et al., 2018). In
addition, the Holdridge Classification (Harris, 2014; Holdridge, 1947) identifies two life
zones: the southern part (Cafine-Cafal) is classified as tropical moist forest, while the
central (Enchugal) and northern (Elalab) regions are tropical dry forests. Currently,
rainfall usually begins in June and ends by late September or October, with average
annual ranging between 1500 mm (North) and 2500 mm (South) (Mendes and Fragoso,
2024). Average annual temperatures vary between 24 °C and 27 °C, with temperature

patterns showing minimal annual fluctuations (Garbanzo et al., 2024b).

Soil consists primarily of alluvial deposits resulting from sedimentation caused by
tidal channels extending into the continent. Their dynamics are influenced by active
oxidation-reduction processes, mainly caused by tidal effects, particularly in mangrove
areas, combined with the accumulation of freshwater during the rainy season. These soils
have an ustic moisture regime, characterized by over 90 consecutive dry days in typical

years (Soil Survey Staff., 2022).

The MSRP agroecosystem is a type of rainfed wetland rice ecosystem that is
particularly vulnerable to both drought and flooding (Balasubramanian et al., 2007). Soil
salinity limits rice production because optimal plant development only occurs under
conditions of sufficient freshwater storage and minimal salt concentration within the
plots. Originally, the soils were tidal terraces with mangrove forests, which were
converted into rice fields by anthropogenic activities. Farmers adopt strategies to prevent
saltwater intrusion by building a primary dike, followed by bunds to retain freshwater,
thus facilitating desalination of the plots (Garbanzo et al., 2024b; Linares, 1981). Over a
period of two to five years, these areas are desalinated and become productive for rice

cultivation. However, tidal influence affects drainage conditions and salt accumulation in
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the lower plots. In addition, farmers used to allow brackish water to enter the TM fields
during the dry season to increase soil fertility, reduce the development of soil toxicity,
and control weeds’ infestation and pests’ attacks. Currently, this practice is seldom used
due to the extreme irregularity of the rainfall regime, which no longer allows the
dissolution and drainage of saltwater before rice cultivation. Furthermore, extreme
rainfall events and strong tides coupled with sea-level rise result in dike breaches and

brackish water intrusion into fields (Mendes and Fragoso, 2023).

3.2. Field data collection and analysis

Due to logistical challenges posed by the distances between villages and the time
required to collect soil samples in rice fields, soil sampling was conducted in different
years. Therefore, sampling was carried out in Cafine-Cafal and Elalab in 2022 and in
Enchugal in 2023. Soil samples (n = 382) were collected using an auger at depths of 0—
25 cm within the paddy fields (Figure 4.A1), corresponding to a sampling area of 1820
ha (Garbanzo et al., 2024b). The sampling was carried out before the start of the rainy
season (May-June), to quantify the initial salinity conditions before the start of rice
production activities. The soil particle size distribution was determined using the
hydrometer method (Bouyoucos, 1926; Day, 2015; Soil Survey Staff, 2022) according to
USDA particle size limits. Soil pH (H20) and electrical conductivity (EC) were measured
on a suspension of soil and distilled water (1:2.5 w/v soil/solution) using the
potentiometric method (Rhoades, 1996; Thomas, 1996). In addition, the Mehlich-3
method (Zhang et al., 2014) was used to quantify the extractable concentrations of Ca*",
Mg?*, Na* (cmol(+) L!). Cation concentrations were measured using inductively coupled

plasma mass spectrometry (Wilschefski and Baxter, 2019).
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The EC was the converted from the laboratory-estimated solution (EC1.2.5, dS m™)
to the saturated soil paste extract (ECe, dS m™). This conversion was necessary because
EC. serves as a standard indicator for assessing soil salinity and provides a consistent
interpretation over time and space (U.S. Salinity Laboratory Staff, 1954). The following

equation was used (Sonmez et al., 2008):

Fine textures EC, =3.68EC;.,5+ 0.22 Eq.4.1.1
Coarse textures EC, =4.34EC,.,5+ 0.17 Eq.4.1.2
Medium textures EC, =3.84ECy.,5 + 0.35 Eq.4.1.3

3.3.Compilation of remote sensing data

The satellite imagery data used in this study was downloaded from the Planet Scope
Project (Planet Labs PBC, 2024) with atmospheric corrections already applied to surface
reflectance. The sensor operates with a spatial resolution of 3 m x 3 m, daily temporal
data and captures spectral information across bands from B1 to BS. Images taken between
May 10" and 25™, 2022, were selected for the Elalab and Cafine-Cafal sites. For the
Enchugal site, images between May 10™ and 25%, 2023 were selected. The selection
process focused on identifying images without cloud cover or traces of Sahara Desert
particles. These images were viewed on the PlanetScope platform website. One image
per study site was downloaded to cover the entire study area. These images represent the
initial state of soil salinity before the onset of rainfall and rice production in GB. The
images were then stored in a designated asset repository on the “Google Earth Engine”
platform and subsequently accessed in the “Google Collaboratory” environment via the

“Geemap” library. The Python programming language version 3.11 (Van Rossum and
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Drake, 2009) was used via the “Google Collaboratory” interface for image processing,

spectral band extraction, and algorithm training.

4. Theory and Calculation

Figure 4.2 describes the modeling approach used in this study, which involves
identifying vegetation indices and particle size classes that best correlate with the ECe
ground truth data, as well as generating machine learning models using three different
algorithms (Random Forest, RF; Support Vector Machine, SVM; and Convolutional
Neural Network, CNN), and the validation of modeling results for soil salinity assessment
in Elalab, Enchugal and Cafine-Cafal using different goodness-of-fit indicators. The

following sections describe the procedures in detail.
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Figure 4.2. Generalized flowchart describing the computational procedures for
developing predictive models (Random Forest, RF; Support Vector Machine,
SVM; and Convolutional Neural Network, CNN) and diagnosing soil salinity
in relation to soil texture within the MSRP in GB (EC. = electrical conductivity
of saturation paste extract in dS m"!; MAE = mean absolute error; RMSE = root
mean square error; p = Pearson’s correlation coefficient; R? = coefficient of
determination; BIAS; PBIAS = percentage BIAS; LOOCV = Leave-One-Out

Cross Validation).
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4.1. Data preparation and models training

4.1.1. Interpolation of textures and raster generation

The Geoestatistics for Environmental Science (GS+) software was used to map the
soil texture in the study areas. The semivariograms were fitted to the measured
proportions of sand, silt, and clay to determine the spatial correlation between the sampled
points and to obtain the parameters necessary to predict soil texture at unsampled sites
(Table 4.A1). Subsequently, the ordinary Kriging method (Ahmed and De Marsily, 1987)
was used for the interpolation process. Spatial autocorrelation analysis was then applied
using the “Global Moran’s Index” statistic. Z-score calculations and derived p-values for

each soil texture class were performed to determine statistical significance.

Geostatistical analysis tools were used to validate soil texture maps using
resampling techniques, particularly Leave-One-Out cross-validation (LOOCYV). The root
mean square error (RMSE), the mean absolute error (MAE), and the Pearson’s correlation
coefficient (p) were calculated to validate all interpolated maps according to the
recommended methodology (Chuvieco, 2020). The resulting interpolation (raster) was
integrated into the machine learning models as a predictor (Figure 4.2). Four raster of soil

texture analyses were performed using the geostatistical module in ArcMap 10.8.2.

4.1.2. Use of buffering
Buffers were used to standardize the areas of analysis, and average values were
extracted from each buffer area. This method captures spatial variability more effectively
because a single pixel (3 m x 3 m) may not accurately represent the existing spatial
variability in a paddy field. To this end, data on field dimensions derived from the
biophysical characterization of the MSRP (Garbanzo et al., 2024b) was used to determine

an approximate radius for all sites. The buffer size for the MSRP analysis was based on
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the dimensions of the smallest plot within the rice fields, which was approximately 6 m
long. This approach follows the methodology used in soil salinity diagnosis (Wu et al.,
2018). To cover an area of approximately 111.26 m?, a circular buffer with a radius of 6
m, divided into five segments, was used. This data homogenization method effectively
approximates the information derived from multiple pixels within an image. The buffer,
which covers a larger area and represents approximately 13 pixels, provides a more
comprehensive representation of spatial data. As a result, the information within the
analysis domain was standardized using ground truth data, with averages extracted from

each band or rasters layer used.

4.1.3. Band and index selection

The selected bands and indices were based on various studies developed worldwide
(Abd El-Hamid et al., 2023; Aksoy et al., 2022; Barreto et al., 2023; Bouaziz et al., 2018;
Chaaou et al., 2022; Dakak et al., 2023; Golabkesh et al., 2021; Li et al., 2022; Mzid et
al., 2023; Shi et al., 2022; Tan et al., 2023; Triki Fourati et al., 2017; H. Zhang et al.,
2023; Zhou et al., 2022), and are defined in Appendix Table 4.B2. The formulas of the
various indices were programmed directly into the “Google Collaboratory” platform,
which provides access to the “Jupyter Notebook Environment”. Google Collaboratory
was used to access GPU and TPU servers, providing greater analytical power for the

machine learning models.

The satellite bands extracted by the Planet Scope sensor, namely B1 (Coastal Blue;
431 — 452 nm), B2 (Blue; 465 — 515 nm), B3 (Green [; 513 — 549 nm), B4 (Green; 547 —
583 nm), B5 (Yellow; 600 — 620 nm), B6 (Red; 650 — 680 nm), B7 (Red Edge; 697 — 713
nm), and B8 (Near-infrared; 845 — 885 nm), were also integrated as raster variables

following the methodology described by Chuvieco (2020). This process was performed
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using JavaScript and integrated into the Google Engine to generate an asset and
standardize the file format (compatibility) for execution in the simulated model on Google

Collaboratory.

Preliminary selection of spectral bands and indices was done using Pearson
correlation, using a threshold p greater than 0.30. Bands and indices were tested against
EC. ground truth data. This process allowed the elimination of indices with limited
significance for salinity diagnosis and the avoidance of overfitting. Filtering involved
selecting the best correlated indices with a significant relationship to EC. (in Appendix

Table 4.C3 and Figure 4.D1).

4.1.4. Machine learning model selection and calibration

Soil salinity within the MSRP in GB was modeled using three algorithms: Random
Forest (RF), Support Vector Machine (SVM), and Convolutional Neural Networks
(CNN). The variables included were the bands, selected indices, and the soil texture
raster. The data was split into a training set (80%) and a test set (20%) using the “train-
test split” method. The dataset for this study totaled 5730 units (382 EC. ground truth
data multiplied by 15 variables representing satellite indices (11) and soil texture data (4)
(in appendix Figure 4.E2). Predictors were scaled using “StandarScaler” to normalize
training and testing values. This standardization is a requirement for machine learning
algorithms (which assume zero mean and unit variance) because they may not perform
optimally if the predictors are not approximately normally distributed (Geron, 2019;

Kuhn and Johnson, 2013).

The RF model used the ensemble regression tree method developed by Breiman
(2001), which is widely used in the literature to identify salt-affected areas (Cui et al.,

2023; Lietal., 2022; Periasamy et al., 2022; Tan et al., 2023; Wang et al., 2021). Equation
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4.2 was used to calculate the prediction y of RF for data point x; where B represents the
total number of trees in the forest, and Ty, (x) is the prediction of the b-th tree for the input

X.

B
1
Y6 = T
b=1

Eq.4.2

Each tree provides an independent prediction, and the final output is the average of
these predictions, reducing variance and improving the accuracy of the models.
Therefore, the number of trees and splits (ntree and mtry) required for training needs to

be adjusted.

The model was programmed using standard tree generation, with interactions tested
at 50-unit intervals ranging from 100 to 2000 trees. The optimal number of trees was
determined using the “GridSearchCV” function (Siji and Sumathi, 2020) from the
“Sklearn library”. Since RF integrates regression from the decision trees created, it then
provides an average of the value index in the most accurate output prediction. Based on
the bootstrap theory, each output of decision trees randomly selects training samples
during growth. This approach enables high-precision analysis by including many input
samples without reducing dimensionality. Further details can be found in Breiman (2001).
In the current study the RF regressor was calibrated with two splits, 100 trees, 27 random

states, and root mean square error as the criterion calculated in each analysis run.

The SVM-supervised learning algorithm serves as a tool for predicting continuous
output variables based on a comprehensive set of input data features (Boser et al., 1992;
Cortes and Vapnik, 1995). The aim of this method is to identify a function that predicts a
continuous variable within a defined margin of error, which is set to epsilon of 0.1 in the

SVM model. This tool is adjusted based on training data to maximize the prediction
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margin and minimize modeling errors (Decoste and Scholkopf, 2002; Huan et al., 2009).
SVM was accessed using Equation 4.3, where «; are the Lagrange multipliers, which are
non-zero for support vectors; y; are the labels of the training data; x; are the support
vectors (training data points that contribute to the model); K(x;, x) is the RBF kernel
used to calculate the dot product in a higher-dimensional space (See Eq. 4.4); y is a
parameter that determines how quickly the value of kernel decreases with an increase in
the distance between the support vector x; and the input point x; and b is the BIAS term

used in the function.

n

(0 = )" @ik (e, x) +b

i=1

Eq. 4.3

K(x;,x) = (—y (i —x)?)
Eq. 4.4

SVM allows the nature of the input data to be mapped into a higher dimensional
space, enabling the capture of complex patterns in the data. More details on solving
optimization problems in soil salinity prediction can be found in the literature (Periasamy
etal., 2022; Venugopal et al., 2023; Xiao et al., 2023). The SVM model was programmed
in Python from the “Scikit-learn” library. It was initialized with a kernel radial basis
function (rbk), a margin of tolerance where no penalty is given to errors of 0.1 (epsilon),
parameter for the kernel function of 0.01 (coef), size of kernel cache of 200 (cache size),
regularization parameter of 1.0, maximum number of interventions for optimization of -

1 (no limit), and tolerance for the stopping criterion of 0.001.

CNN was used in the current study with the aim of improving the efficiency in
effectively capturing local and spatial predictors, which is crucial for accurate regression

tasks (Goodfellow et al., 2016; LeCun et al., 2015). CNNs use convolutional operations
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to process spatial data that apply a pooling function to reduce dimensionality while
preserving the most relevant predictor from the input data (Goodfellow et al., 2016). The
convolutional operation applies a filter or kernel to the input to generate a predictor map
that enables the detection of increasingly complex patterns across different network layers
(Krizhevsky et al., 2017). This convolution is successively applied by the deep layer of
the neural network, facilitating the transfer of learning from the initial layer to the output
layer (Simonyan and Zisserman, 2014; Zeiler and Fergus, 2013). For regression purposes,
CNN are particularly useful in mapping input data to continuous output values, where the
translational invariance of predictors enables robust predictions (Pongrac and Gleich,
2021; Zhang et al., 2022). This approach significantly reduces the number of required
parameters and increases the accuracy of continuous value prediction (Goodfellow et al.,

2016; Simonyan and Zisserman, 2014).

In the current study, a one-dimensional CNN was used and programmed using the
“PyTorch” library (Ansel et al., 2024; Howard and Gugger, 2020). Data frames were
created with the selected indices and EC.. The CNN architecture included a 1-D
convolutional layer and eight fully connected layers, each with 78 neurons (See Appendix
F). The first estimation of the hyperparameters was performed using the “GridSearchCV”’
function (Siji and Sumathi, 2020) from the “Sklearn library”. The function optimizes the
parameters of the estimator through a cross-validated grid search over a given parameter
grid (Buitinck et al., 2013; Pedregosa et al., 2011). The model was then manually fitted
by analyzing the loss function plot and calculating the selected goodness-of-fit indicators
(Section 3.2) from the observed data compared with the predicted data to achieve a more
accurate fit to the training data. In addition, it included 34 batch normalization layers and
a dropout layer with a rate of 1.0 X 1073 to prevent overfitting. Structural stabilization

was achieved with a hidden size of 78 and 32 epochs. An “Adagrad” optimizer with a
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learning rate of 2.37 X 1072 and a regularization parameter of 1 X 10~2 was also used.
The loss function was programmed using “SmoothL1Loss”, which was carefully

monitored during training.

4.1.5. Evaluation of the performance of the salinity prediction model

Several goodness-of-fit indicators were used to assess the performance of the model
considering both the “testing data’ and “all predicted data”. These included the root mean
square error (RMSE, dS m™!), the root mean square error normalized by the mean of the
observations (NRMSE, %), the mean absolute error (MAE, dS m™'), the Pearson correlation
coefficient (p), the coefficient of determination (R?), the average direction and magnitude
of the systematic error represented by the BIAS, and the percent bias (PBIAS, %) which
measures the average tendency of the estimates to be larger or smaller than the
corresponding ones observed (Hodson, 2022; Paredes et al., 2018; Plevris et al., 2022;
Steurer et al., 2021). Additionally, the ratio of performance to interquartile error range
(RPIQ) were used as a robust metric for evaluate model accuracy. RPIQ emphasizes the
reliability of predictions withing the central 50% of observed data, following the
methodology of Bellon-Maurel et al., (2010); Krause et al., (2005). These metrics were
used to validate texture raster interpolation maps, to adjust hyperparameters in RF, SVM,

and CNN, and evaluate model performance in predicting soil salinity in the study sites.

For the superior accuracy algorithm (RF in this study), the percentage importance
of each variable was estimated (Figure 4.E2). The predictor importance was calculated
by assessing how much each predictor contributed to reducing the mean squared error
(MSE) in the predicted data (Breiman, 2001). This process, also referred to as impurity
reduction, quantifies the importance of each predictor by assessing the reduction in

impurities, particularly the reduction in MSE (Louppe et al., 2013). It occurs when a
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predictor is used to split a node in the decision trees. The cumulative reduction in MSE
for each predictor is then calculated for all trees and nodes in the RF. This value is
normalized to obtain the predictor importance, which reflects how much each predictor
contributes to reducing the overall prediction error in the RF model (Buitinck et al., 2013;

Pedregosa et al., 2011).

Redundancies in the model were assessed manually for each predictor (in appendix
Figure 4.D1). To achieve this, the RF model was re-run, excluding individual predictors
(see appendix Figure 4.E2). Since each predictor contributed significantly to the model,
its absence from the model inputs reduced the optimal goodness-of-fit indicators (highest
R? values, and lowest values of MAE, RMSE, BIAS, and PBIAS) achieved in this study
(Table 4.1). To identify statistical differences in Ca*, Mg**, Na*, and EC. concentrations
between study sites analysis of variance was also performed, followed by Tukey’s
multiple comparison test (a= 0.05) (Tukey, 1949). Metrics were calculated at each
programming step using Python, while additional statistical analyses were performed
using R software version 2024.04.1 (R Core Team, 2024). Finally, soil salinity mapping

was created using QGIS version 3.28 (QGIS Development Team, 2024).

137



5. Results

5.1.50il salinity in the study sites

The village of Elalab exhibited significantly (a= 0.05) higher EC. values than the
other sites, averaging 82.1 dS m™!, with a range from 0.4 to 228.7 dS m™! (Figure 4.3). The
lowest EC. values were reported at Cafine-Cafal, averaging 30.8 dS m™! and ranging from
0.5 to 150.9 dS m™'. Sodium was found to be the main cation influencing soil salinity,
with extractable concentrations ranging from 0.1 - 173 cmol(+) L™ in Elalab, 0.2 - 122.4
cmol(+) L in Enchugal, and 0.3 - 99.3 cmol(+) L! in Cafine-Cafal. Magnesium also
displayed a pronounced distribution, particularly in the village of Elalab and the specific
location of Enchugal, with the highest concentrations reaching 41 cmol(+) L. This
underscores the significant influence of Na* and Mg?* on hypersaline zones in the MSRP

of GB.
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Figure 4.3. Concentration of extractable Ca’, Mg?*, and Na*, and electrical conductivity

of the saturation paste extract (ECe.) in the study sites of Elalab, Enchugal, and

Cafine-Cafal, Guinea-Bissau. * Different letters indicate statistically

significant differences (o= 0.05) according to Tukey’s test.

The data density, as assessed from the samples analyzed across the three study sites,

exhibited considerable variability depending on the geographical location of the sampling

sites (Figure 4.4). The Cafine-Cafal and Enchugal sites showed similar clay contents

across all sampling locations. In contrast, Elalab was characterized by lower clay

contents. In the Cafine-Cafal and Enchugal, silt showed notably higher data density

between 20% and 60%. Thus, MSR fields exhibit similar distribution patterns for the

diverse texture in Enchugal and Cafine-Cafal, while in Elalab fields a more homogeneous

distribution of their physicochemical characteristics occurred (Figure 4.3).
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Figure 4.4. Kernel density estimation for data on clay (A), silt (B), and sand (C)
percentage analyzed in the study sites of Cafine-Cafal, Elalab, and Enchugal in

Guinea-Bissau.

Analysis of the MSRP soil textures at the study sites revealed that Elalab soils were
characterized by a higher sand content than Enchugal and Cafine-Cafal, where medium,
medium-fine and fine textures predominated (Figure 4.5). However, there were also many
locations in Elalab with medium (loam) and medium fine textures (loam silt and silty
loam). When the EC. values are plotted into the texture diagram, it becomes clear that

higher EC. values are mainly found in medium fine texture soils.

140



Villages ECe (dSm’)

100 ¢
ala

. 15-35

Enchugal 7215

4-7

< 4

3 5

9 A

Clay Lgam Siity, Glay Loam

fol e
20 . ; an, .':'- .
:‘ '.. ': L&, JSitloam
~ [ 9'&*\ ve
~ (4 a *
2 2 & % % 2 % 3 B 9
<
Sand (%) Sand (%)

Figure 4.5. Soil particle (clay, silt, sand) (A) and EC. (B) distribution in the texture

triangle.

3.2. Selection of salinity predictors

Redundancies were identified when a large number of predictors were used in this
study (Table 4.1). The exclusion analysis revealed that removing indices with lower
correlation with ECe had no impact on the maximum metrics achieved during model
training. However, excluding indices with higher correlation with EC. significantly
changes all goodness-of-fit metrics (R*= 0.26, MAE = 32.69 dS m™!, RMSE = 45.44 dS
m™!, NRMSE = 102%, BIAS = -0.18, and PBIAS = -0.41%). This pattern was also
observed when using all texture rasters. Combining of all soil texture raster with the best
indices significantly improved the model metric (R*= 0.59, MAE = 23.02 dS m™!, RMSE
=33.89 dS m’!, NRMSE = 76%, BIAS = -1.95, and PBIAS = -4.39%). However, some
texture rasters exhibited similar behaviors, which led to redundancies in the predictions.
This issue was particularly evident when the best indices and texture raster were modeled
individually. While the use of silt and clay rasters showed sufficient precision (R?>= 0.58,

MAE = 23.38 dS m"!, RMSE = 34.01 dS m™!, NRMSE = 77%, BIAS = -2.45, and PBIAS
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=-5.53%), they tended to overestimate salinity by associating a high EC. value to all sites
with high clay content. This observation was confirmed through map interpolation using
two texture rasters, which incorrectly identified high EC. locations where such conditions
did not exist. For this reason, the decision was made to use only one raster to enhance the
accuracy of the salinity map predictions. Therefore, a combination of indices and texture
rasters used in this study, which achieved optimal goodness-of-fit indicators in terms of
BIAS and PBIAS was used in this study (R*=0.53, MAE = 26.79 dS m™!, RMSE = 36.14
dS m™!, NRMSE = 81%, BIAS = -0.26, and PBIAS = -0.59%). These predictors were

selected because during the training phase showed the highest accuracy in the data set.

Atthe MSRP sites in GB, three satellite indices showed the highest correlation (0.34
— 0.51) with the ground-truth ECe (Figure 4.6). These indices were the normalized
difference salinity index (RNDSI) calculated with Red Edge (Band 4.7), normalized
difference salinity index (NDSI), and normalized difference water index (NDWI). The
respective formulas/definition and selection criteria can be found in the appendix (Table
B2 and Table C3). The data showed positive correlations for RNDSI, NDSI, and NDWI.
Furthermore, the silt raster showed a correlation with the ground-truth EC., with a
correlation coefficient of 0.10. This indicates a low direct correlation with soil salinity,

compared to the sand raster (0.23) and clay raster (-0.43).
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Figure 4.6. Pearson correlation coefficients between selected variables and ground-truth
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Table 4.1. Impact of excluding predictors on RF model and optimum goodness-of-fit

indicators achieved in the training data set.

Indices included in the Indices excluded R2 MAE RMSE | NRMSE BIAS PBIAS
model from the model (dSm?) | (dSmM) (%) (%)
Exclusion of individual indices
All Indices : 044 | 2789 | 3942 89 | -029 | -065
RNDSL, RNDVI, NDSL
NDWI, SAVI, YRNDSL
NDVL YRNDVL GRVI | GNDVI 046 | 2770 | 3885 88 | -0.13 | -0.29
GCVI
RNDSI, RNDVI, NDSL
NDWI, SAVI, YRNDSL | GNDVI, GCVI 046 | 2741 | 3878 87 | -038 | -086
NDVI, YRNDVL, GRVI
RNDSL RNDVI, NDSL
NDWI, SAVI, YRNDSL | GNDVL GCVL, GRVI | 045 | 27.62 | 38.90 88 | -030 | -067
NDVI, YRNDVI
RNDSL, RNDVI, NDSL
NDWI, SAVI, YRNDSI, | SNPVE GEVLGRVL | g 46 | 2747 | 3881 87 | 067 | -1.50
YRNDVI
NDVI
RNDSL RNDVI, NDSL | GNDVL GCVL GRVIL,
NDWL SAVL YRNDST | YRNDVI. NDVI 045 | 2765 | 3811 88 | -069 | -1.56
GNDVL, GCVI, GRVL
EE%I’SEJPVL NDSL | yRNDVI,  NDVL | 045 | 2804 | 39.19 88 | -035 | -0.78
: YRNDSI
GNDVI, GCVI, GRVI,
113111\)11\?\1811’ RNDVI, NDSL | {pNDVI,  NDVL | 044 | 2815 | 3954 80 | -027 | -0.60
YRNDSI, SAVI
GNDVL GCVL, GRVL
YRNDVI,  NDVL
RNDSL RNDVLNDST | ypxpdr Savr | 026 | 3260 | 4544 102 | 018 | 041
NDWI
GNDVI, GCVI, GRVI,
RNDSL RNDVI, NDWI | YRNDVL,  NDVL | 031 | 3105 | 4384 9 | -072 | -1.62
YRNDSI, SAVI, NDSI
GNDVL GCVI, GRVL
YRNDVI,  NDVL
RNDSI NDWLNDSI | ypxpdr savi | 045 | 2798 | 308 88 | -0.41 | -0.92
RNDVI
GNDVI, GCVI, GRVI,
SE\?ISI’ NDWIL, NDSL | ypNpv,  NDVL | 046 | 2763 | 3880 87 | -053 | -1.19
YRNDSI, RNDVI
GNDVL GRVL, GCVL
RNDSI, NDWI NDSL | ypNpyL YRNDSL | 047 | 2744 | 3847 87 | -0.64 | -144
SAVIL, NDVI
RNDVI
GNDVI, GRVL, GCVI,
EIEBISL NDWL NDSL | ypeNDVI, YRNDSL | 046 | 2762 | 38.66 87 | -052 | -1.17
RNDVI, SAVI
RNDSI, NDWI, NDSI, | GNDVL, GRVL GCVL,
NDVI + all soil texture | YRNDVL, YRNDSL | 0.60 | 22.83 | 3347 75 | -1.82 | -4.10
raster RNDVI, SAVI
GNDVI, GRVI, GCVI,
Efﬁil;eﬁzl;aﬁ?fl * | YRNDVI, YRNDSL | 059 | 23.02 | 33.89 76 | -1.95 | -4.39
RNDVI, SAVI, NDVI
RNDSI, NDWI, NDSI, | GNDVL, GRVI, GCVL,
SAVL, NDVI + all soil | YRNDVI, YRNDSL | 0.60 | 2264 | 33.12 75 | -196 | -442
texture raster RNDVI

** Table is continuing in the next page.
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Indices included in the Indices excluded R? MAE RMSE | NRMSE BIAS PBIAS
model from the model (dSm™) | (dSm™) (%) (%)

Best indices achieved + exclusion of individual soil texture
Indices + soil texture | Soil texture raster
included excluded
RNDSI, NDWI, NDS]I, silt
raster, Clay raster, Clay+Silt | Sand raster 0.59 22.87 33.72 76 -2.56 -5.77
raster
RNDSI, NDWI, NDSI, silt Sffmd raster, Clay + 0.58 2338 34.01 77 245 5,53
raster, Clay raster Silt raster

. Sand raster, Clay +
RNDSI, NDWL, NDSL Silt | o510 oier. Clay | 053 | 2679 | 36.14 81 | -026 | -0.59
raster

raster

RNDSI, NDWI, NDSI, Clay Sffmd raster,' Clay + 0.53 24.44 36,16 2 319 719
raster Silt raster, Silt raster
RNDSI, NDWI, NDSI, Clay | Sand raster, Silt 0.50 2584 3730 34 112 253
+ Silt raster raster, Clay raster

RMSE = root mean square error. NRMSE = Normalized root mean square error. MAE = mean absolute
error in dS m-1. PBIAS = Percent Bias. p = Pearson’s correlation coefficient. R?> = coefficient of
determination. Observations = 382. Samples used to train the model = 305. N. testing data = 77. Index and
rasters used = 15. n. matrix = 5730. Red Number indicates lowest accuracy. Bold numbers indicate the best
goodness-of-fit achieved.

5.3. Soil salinity models

The RF algorithm accurately predicted EC. using three satellite indices (RNDSI,
NDSI, NDWI) and a silt raster (Table 4.2). When analyzing the training data for the RF,
SVM, and CNN models, all models achieved a Pearson correlation coefficient exceeding
0.67 (strong to high correlation (Taylor, 1990)). However for this study, the model with
the highest R? (0.84), and ratio of performance to interquartile range (RPIQ = 2.53),
lowest NRMSE (2 %), BIAS (0.45), and PBIAS (0.04%) (Table 4.1), was considered the
best model. Therefore, the RF model has the highest precision and accuracy (R?> 0.84)
in predicting EC. (MAE = 13.35 dS m’!, RMSE = 20.89 dS m™), with a Pearson
correlation (p) of 0.91 and a high RPIQ of 2.53. Finally, the low positive BIAS in the RF
resulted in slight overfitting, reflected in a PBIAS of 0.04% across the predicted data set.
This indicates a systematically low percentage of overestimations in the prediction model

results (Figure 4.7A).
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Table 4.2. The accuracies of the models in RF, SVM, and CNN for Leave-One-Out Cross
Validation were used to predict EC. in Elalab, Enchugal, and Cafine-Cafal in

Guinea-Bissau, West Africa.

MAE RMSE NRMSE PBIAS
p R? BIAS RPIQ
Models @Sm')  @dSm? (%) (%)

RF 073 053 2679 36.14 81 026 -059 143
SVM 067 0.16 32.63 48.19 109  -12.05 -27.17 107
CNN 070 043 2587 39.93 90 1071 2415 127

RF 091 084 13.35 20.89 2 045 004  2.53
SVM 059 0.12  29.70 45.86 98 1347 2878  1.16
CNN 070 043  22.89 37.40 81 1037  -2239  1.38

RMSE = root mean square error. NRMSE = Normalized root mean square error. MAE = mean absolute
error. PBIAS = Percent Bias. p = Pearson’s correlation coefficient. R? = coefficient of determination. RPIQ
= ratio of performance to interquartile range. RN = Random Forest. SVM = Support Vector Machine. CNN
= Convolutional Neural Networks. Observations = 382 soil samples. Samples used to train the model =
305. N. testing data = 77. Soil texture raster used = 1. Satellite indices used = 3. Total n. matrix = 1528.
Silt raster contributed significantly to the prediction of soil salinity in the three study
areas (Figure 4.7B). When evaluating the importance of the indices’ for predictions,
RNDSI and Silt raster emerged as the primary contributors for model calibration,
explaining 18.6% — 47.2%. In addition, NDSI and NDWTI individually contributed 17.4%

and 16.8% respectively. These findings underscore the potential of these indices as

valuable tools for predicting soil salinity in the three GB regions within the MSRP.
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Figure 4.7. Scatterplot between observed and predicted values in EC. and percentage of
index importance in predictions generated by RF in the Elalab, Enchugal, and
Cafine-Cafal study sites in GB. A) Scatterplot of predicted vs observed EC..

B) Percentage of importance by index contribution in the model.

The salinity models effectively predicted the spatial distribution of EC. in the
country’s MSRP, which was confirmed by cross-validation between the three study sites
(Table 4.3). The RF model showed a maximum p value of 85%, while the R? values at
the three sites ranged from 0.71 to 0.81. Notably, Cafine-Cafal achieved the most accurate
predictions, with a MAE of 10.81 dS m™!, and a RMSE of 15.59 dS m™!. Based on the
BIAS analysis, the modeled values of all three study sites were found to have low values
(PBIAS ranged from -5.73% to 5.81%), indicating a systematic slight overestimation
tendency in Cafine-Cafal and a slight underestimation tendency in Elalab and Enchugal.
Then, the RPIQ values for the three sites were 3.01 (Elalab), 2.56 (Cafine - Cafal) and
2.07 (Enchugal), indicating strong prediction performance, particularly in Elalab village.
Consequently, the RF model provides a robust validation for the diagnosis of soil salinity
at the three sites in different regions (Tombali, Oio, Cacheu), each characterized by

different edaphoclimatic conditions (Figure 4.8).
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Table 4.3. Model accuracy in RF cross-validation between Elalab, Cafine-Cafal and
Enchugal used to predict EC. in Guinea-Bissau.

RF by study MAE RMSE NRMSE PBIAS

sites PR Sml) @sm') (%) BIAS (o, RPIQ
Elatab 090 081 1968  29.23 36 -097 -1.19 3.0
Cafine-Cafal 085 071 1081 1559 51 179 581 226
Enchugal 091 080 1171 1939 49 225 573 207

RMSE = root means square error. NRMSE = Normalized root means square error. MAE = mean absolute
error. PBIAS = Percent Bias. p = Pearson’s correlation coefficient. R? = associated with Linear model.
RPIQ = ratio of performance to interquartile range. RN= Random Forest.
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Il ;10

15“58'0 15°26'O
Figure 4.8. Soil salinity map located in the Cafine-Cafal (A), Elalab (B), and Enchugal
(C) of Guinea-Bissau (D), West Africa. Soil salinity scale for the mangrove

rice agroecosystem according to Sylla et al., (1995) adapted to EC. (dS m™)
(Sonmez et al., 2008).
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6. Discussion

6.1.So0il salinity and texture in MSRP

The variability of EC. across the three study sites in GB ranged from 0.5 dS m™! to
353.7 dS m™!, with higher conductivity values observed near creeks/sea branches, and
lower values in the middled rice fields (Figure 4.8). This pattern is likely due to the recent
conversion of these areas to rice cultivation, as they are still influenced by tidal effects
(Garbanzo et al., 2024a). Among the three study sites, the northern region exhibited
higher EC. levels, likely resulting from a combination of lower rainfall distribution and
agricultural management practices that promote salt accumulation in certain zones of the
MSR fields. At the onset of the rainy season, rice cultivation in these areas is only possible
if rainfall is sufficient to leach out salts from the rootzone, and if salt dissolution does not
significantly hinder osmotic water uptake by rice varieties grown (see also, Muchate et
al., 2016; Rodriguez Coca et al., 2023). A detailed discussion of rice production in these

area and the key factors influencing soil salinity is available in (Garbanzo et al., 2025).

The extremely high EC. values identified in this study are characteristic of
hypersaline environments and are consistent with findings from other research conducted
in mangrove rice fields in GB (Andreetta et al., 2016; Sylla et al., 1995), once the data
are standardized to EC.. D’Amico et al., (2024) even reports higher, potentially unrealistic
values. Comparable salinity levels have also been documented in mangrove ecosystems
(Ahmed et al., 2022) and other hypersaline regions globally, such as Australia (Parker,
2004), the USA (Scudiero et al., 2015; Timm and McGarigal, 2012), Mexico (Navarro-
Noya et al., 2015), Iran (Golestani et al., 2023), or Spain (Herrero et al., 2015; Herrero

and Castafieda, 2023). Nonetheless, the elevated EC. values reported in this study should
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be interpreted with caution, as no established conversion procedure currently exists for

salinity levels this high.

Salinity in MSRP fields in GB depends on the concentration of Na*, Mg?*, and Ca*™
in the soil solution. These are the main cations that cause osmotic stress, and hinder water
uptake by rice plants in some areas (Golabkesh et al., 2021). Particularly noted is the
presence of high extractable Na* concentrations (ranging from 50 to 173 cmol(+) L),
which largely contributed to soil salinity observed in these locations. These constitute
21% of the samples, all of which were previously mangrove forest soils (Andrieu et al.,
2019; Naidoo, 2023; Temudo et al., 2015; Temudo and Cabral, 2017). The high Na*
concentration observed in this study is consistent with those recently reported by
D’Amico et al., (2024) in GB (0.17 — 1763.8 cmol(+) kg™! with ammonium acetate. The
increased concentrations of these elements originate from the genesis of these soils
resulting from the alluvial sedimentation of particles near saline water bodies and the
sedimentary impacts induced by tidal dynamics (D’Amico et al., 2024; Sylla, 1994; Sylla
et al., 1995). The concentration of extractable Ca and Mg exceeded the critical levels for

plants (Ca= 5, and Mg = 0.7 cmol(+) L), as reported by Cabalceta and Molina (2005).

Medium fine soil textures (silty textures) had the highest EC. values determined in
this study. These soils are characterized by poor structure and drainage conditions. The
microporosity of the soil facilitates the upward movement of water and salts resulting
from crop evapotranspiration. At the same time, low infiltration rates make the natural
leaching process caused by rainfall challenging. Furthermore, loam soil textures have
larger pores compared to fine texture classes, facilitating water movement through soil
profiles (Ju et al., 2024; Lipiec et al., 2006). Infiltration rates are significantly higher in
loamy and sand soil textures, facilitating the downward movement of solutes to deeper

horizons, and thus leaching of salts (Allaire-Leung et al., 2000; Liu et al., 2023; Sun et
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al., 2022). In contrast, clayed soil exhibit microporosity, resulting in greater tortuosity in
the movement of water and solutes (Salmas et al., 2003; Singh, 2024). These soils tend
to be well structured which can facilitate leaching. However, high sodium concentrations
also disrupt soil structure, affecting pore continuity due to particle dispersion, and thereby

destroying soil structure (Rengasamy and Olsson, 1991).

Further research on the hydrological and geochemical processes governing water
and salt transport in MSR fields is essential. To ensure the sustainability of MSR, it is
therefore imperative to educate farmers and decision makers about the complex dynamics
of these processes (Bazrafshan et al., 2020; van de Craats et al., 2020). As discussed by
others (Li et al., 2022), differences in agroclimatic and pedogenetic characteristics
between sites likely result in divergent patterns in water and salt fluxes. Notably, the
northern and central study sites experience less precipitation compared to their southern
counterparts, resulting in less salt leaching (see Van der Zee et al., 2017). This suggests
a possible correlation between fluctuations in the groundwater level and its proximity to
the soil surface. Some studies suggest that leaching of salts due to high tides is related to
the ease of water movement in loamy soils (White and Madsen, 2016). In all coastal
regions of the country where MSR is produced, endopedons tend to be saline (Andreetta
et al., 2016; D’Amico et al., 2024), resulting in high concentration of dissolved salts in
the phreatic zone (Van de Craats et al., 2020, White and Madsen, 2016). It is possible that
in regions with sandy and loamy textures (such as the Elalab village), increased salt
concentration occurs in the upper horizons in combination with the pressure effects of
tidal movements, high soil evaporation, and low annual rainfall. Thus, tidal influences
can directly impact groundwater dynamics, facilitate salt migration toward surface
horizons and interact with soil water evaporation during the peak of the annual rainy

s€ason.
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This likely contributes to hypersalinity in certain MSRP areas, as also reported by
Sylla (1994). Additionally, water management practices have a direct impact on cation
leaching from plots. For example, farmers in the north (Elalab) no longer drain freshwater
(rainwater) that accumulates before plowing. In contrast, farmers in the South (Cafine-
Cafal) and certain areas of the Oio region (Enchugal) drain excess water before plowing.
This practice promotes desalination of sites during high rainfall years. In Elalab village,
progressive accumulation of salts occurs due to limited leaching, resulting in salts

remaining in the system and exacerbating soil salinity.

6.2.Spatial distribution of hypersalinity in MSRP fields

The RNDSI index contributed the most to improving soil salinity predictions in the
MSRP in GB (Figure 4.8). This is likely because they provide essential information about
the reflectance of areas with diverse vegetation cover. These findings are consistent with
those of other studies (e.g. Tan et al., 2023). The initial conditions of the paddies fields
show large variations in various factors such as vegetation cover, dry and wet areas, in
remnants of previous crops, and the occurrence of saline water intrusion. These likely
provide information through reflectance in locations, such as energy transfer in soil or in
various vegetation covers (Cui et al., 2023). Salinity index is widely used to monitor soil
salinity and evaluate vegetation changes (Sirpa-Poma et al., 2023; Xiao et al., 2023;
Zhang et al., 2022). In particular, the silt raster provides the model with a direct way to
identify regions associated with high salt concentration, as discussed in Section 5.1. In
addition, NDSI and NDWTI also played an important role in the model (Figure 4.7.B).
Manual exclusion of each index resulted in reduced prediction accuracy (Table 4.1),
underscoring their common importance in predicting soil salinity. These results are

consistent with other studies indicating that variations in salinity reflectance spectra are
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not due to a single soil property (Csillag et al., 1993) but rather to a complex interplay of
site-specific characteristics (Dehaan and Taylor, 2002; Kalambukattu et al., 2023;
Pettorelli et al., 2005) the combined contribution of salinity indices (RNDSI, NDSI), soil
texture and water index (NDWI) were important for training the RF model. These indices
have shown good accuracy in other soil salinity studies, such as using RNDSI (Tan et al.,
2023), NDSI (Venugopal et al., 2023), and NDWI (Lopes et al., 2020). Recently, Liu et
al., (2023) successfully used SVM, RF regression, and multiple linear regression (MLR)
to couple MODIS-NDVI, with electrical conductivity and soil texture to predict salinity

conditions in Punjab, Pakistan.

The results show that the RF regression algorithm was effective in identifying
hypersaline sites within the MSRP (Figure 4.8). The exclusion analysis (Table 4.1)
revealed that several features were non-essential for predicting ECe, although it is
important to accurately assess the spatial distribution of salt concentrations in the MSRP,
especially given the elevated EC. values (> 15 dS m™). Similar results were reported by
Sylla et al. (1995) on soil salinity in West Africa and supported by recent studies
identifying high-risk hypersaline zones (D’ Amico et al., 2024; Naimi et al., 2021; Yang
et al., 2023), that are not easily detectable with remote sensing (Bannari et al., 2008).
Such extreme site conditions could pose a challenge to rice production at the beginning
and/or late phenological stages (e.g., flowering, grain filling), due to their high
susceptibility to soil salinity (Minhas et al., 2020). While some studies used RF
classification to predict salinity (Sirpa-Poma et al., 2023; Timm and McGarigal, 2012;
Wang et al., 2021), these studies included sites with comparatively lower salinity (< 8 dS
m™!) than those used for MSRP in GB. Furthermore, in these previous studies, the method
was often applied to crops with low salinity tolerance, as is the case of some rice varieties

(Sirpa-Poma et al., 2023; Wang et al., 2021).
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The mangrove swamp areas in GB have shown that rice production is feasible in
hypersaline locations. Smallholders grew rice under these initial hypersaline conditions
and were able to become self-sufficient in rice (Garbanzo et al., 2024a; Martiarena and
Temudo, 2023). The key to rice production in these locations lies in the efficient
management of rainwater collection (Singh, 2021), which helps to dissolve salts in the
fields and use the fields for fresh-water storage (Dossou-Yovo et al., 2022; Garbanzo et
al., 2024b). Periasamy et al., (2022) highlighted the challenges for agricultural production
in such systems. Nevertheless, farmers in GB have identified and demonstrated effective
strategies for cultivating rice in highly saline environments. Although farmers have been
able to manage salinity with the variable rainfall, these hypersaline locations remain
extremely vulnerable (Han et al., 2024), especially in the face of climate variability and
change. This fact requires a detailed understanding of the dynamics of salt movements
and the solubility of salt within the system to optimize agronomic management in rice

production.

6.3. Consideration regarding the utilized model

In this study, the RF model showed the highest accuracy, i.e. the lowest MAE,
RMSE, and BIAS values, in diagnosing soil hypersalinity in GB (Table 4.2). The metric
showed that it was superior in predicting EC. compared to SVM and CNN. As discussed
by Breiman (2001), the RF model provides robustness to dimensional issues and data
noise and enables efficient capture of complex patterns while controlling the inherent
variance in model fitting (Liaw and Wiener, 2002; Liu et al., 2012; Siji and Sumathi,
2020). Compared to SVM and CNN, RF may face challenges with highly variable and
linear regression as reported in several studies (Decoste and Scholkopf, 2002; Huan et al.,

2009; Krizhevsky et al., 2017). However, CNN is more commonly used for image
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prediction due to its ability to automatically learn hierarchical features (Bishop, 1995;
Haykin, 1999; Krizhevsky et al., 2017), and has the advantage of detecting patterns in
image data, as it requires large data-sets for training (Bishop, 1995). On the other hand,
SVM can become inefficient as it allows manipulation of fewer hyperparameters

compared to CNN and RF.

CNN and RF showed no significant differences (p<0.05) in data prediction during
the training phase, conversely, they showed significant differences in prediction of all
data-sets. These findings are consistent with those of Louppe et al., (2013). In the current
study, all three models were tested because existing literature on soil salinity
recommended their use (Cui et al., 2023; Naimi et al., 2021). Salinity in MSRP fields had
high variability in ECe, and no existing literature was found to recommend an optimal
model for analyzing soil hypersalinity levels. Furthermore, some studies show that RF is
an optimal model for soil salinity analysis, due to its high accuracy, robustness to
overfitting, ability to provide insights into feature importance, and scalability for
processing large data-sets (Kalambukattu et al., 2023; Xiao et al., 2023). Similar results

have been reported for mapping mangrove systems in West Africa (Mondal et al., 2019).

Finally, the exclusion analysis using the RF model in this study revealed a high R?
value using the Clay and Silt raster together. However, the generated interpolation maps
did not agree with the field observations. The inclusion of the clay raster in the model
leads to the incorrect classification of all sites with high clay content in the MSR fields
as saline. This misclassification is due to the high clay content of most sites and can lead
to systematic prediction errors in the model. Therefore, it is recommended to review the
BIAS and PBIAS metrics to determine the most accurate soil texture raster that more

accurately reflects actual field conditions.
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7. Conclusions

Understanding MSR farming and water management practices, as well as the
influence of Mg and Na on soil salinity is crucial for sustainable rice cultivation in GB.
Soil salinity and its spatial distribution in MSRP areas showed significant correlations to
silt raster, and different satellite indices (RNDSI, NDSI, NDWI). The use of algorithms
such as RF proved to be an effective tool for understanding and improving the spatial
distribution of EC. in the MSRP system. This approach provides an accurate
approximation when validated at three different study sites, each regionally separated and
with unique edaphoclimatic characteristics. The methodology outlined in this article for
analyzing the spatial distribution of soil salinity in village paddies will facilitate the
accurate identification of areas vulnerable to salinity in the mangrove swamp rice
agroecosystem. This precision is important for the collaborative development of effective
strategies to mitigate soil salinity. However, given the extremely high salinity levels
observed at the onset of the rainy season, prior to rice planting, it is important to further
explore and refine ECe conversion models for these upper salinity ranges. Enhancing
these models would improve the accuracy of current monitoring approaches, most of

which using more expedite extracts for soil analysis and characterization.

Furthermore, the study highlights the imperative need for targeted interventions to
address excessive soil salinization to optimize rice cultivation and water management
practices in the MSRP in GB. Research carried out in GB over the past few decades has
shown that the most successful measures to improve agricultural productivity and control
soil salinity have been oriented towards creating of a semi-automated water management
system operating both at the level of the entire village rice field and at the level of
individual plots (see www.universsel.org). The developed model can thus help to identify

the hypersaline locations of the rice fields where the installation of drain valves can allow
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rapid and efficient drainage of the salts after the first rains. Furthermore, given the poor
results of mangrove plantation in the country, this methodology can be adapted to identify
the locations where plantation/sowing is prone to failure and provide nature-based
solutions for mangrove forests recovery and increasing blue carbon sequestration in
coastal areas of Guinea-Bissau and West Africa. Such strategic actions are essential for
promoting sustainable agricultural practices and ecological resilience in the region and
will contribute to achieving the Sustainable Development Goals SDG1, SDG2, SDG12,

SDG13, and SDG14 (United Nations, 2024).

This research represents one of the first attempts to map MSR areas in GB using
machine learning techniques. While initial results are promising, additional validation
and calibration of the prediction model across diverse geographic and climatic
environments is necessary to ensure its robustness and applicability in West Africa. This
is a key area for future work. Furthermore, there is a lack of comprehensive understanding
of the specific roles and interactions of different cations in soil salinization, which could
provide deeper insights into salinity dynamics. The lack of long-term monitoring studies
limits the ability to assess the effectiveness of current salinity management practices and
to refine the model over time, taking into account changing climatic conditions.
Addressing these gaps will be crucial to advancing the scientific field and improving soil

salinity management strategies.
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8. Appendix

8.1. Appendix A. Sampling point map and geostatistical analysis and
validation for soil texture raster.
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Figure 4.A1. Maps showing the specific points where soil samples were collected.
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Table 4.A1. Geostatistical parameters and “Global Moran's Index” evaluation, along with cross validation, used to map soil texture in Cafine-

Cafal, Enchugal, and Elalab in Guinea-Bissau.

Samples Model Nugget Sill Range M((;)i(;l:'l: I Variance punct%la tion p-value* | MAE RMSE P
------ index ---—--—- | m Index

Cafine-Cafal maps interpolation (n = 183)

Sand Exponential 0.002150 0.0171 564 0.10 0.00373 1.755 <0.001 0.013 0.0172 0.99

Silt Exponential 0.001420 0.01154 480 0.0997 0.00373 1.704 0.088 0.010 0.0134 0.99

Clay Exponential 0.002410 0.02212 507 0.198 0.00375 3.334 <0.001 0.013 0.0164 0.99

Elalab maps interpolation (n =99)

Sand Exponential 0.0466 0.1433 1579.93 0.381 0.005 5.463 <0.001 0.149 0.174 0.77

Silt Gaussian 0.0331 0.1516 4520.65 0.348 0.005 5.010 <0.001 0.121 0.145 0.78

Clay Linear 0.006823 0.00682 1470.36 -0.053 0.005 -0.612 0.54 0.053 0.067 0.56

Enchugal maps interpolation (n = 100)

Sand Spherical 0.00003 0.01516 471 0.0258 0.0034 4.601 <0.001 <0.001 0.001 0.99

Silt Exponential 0.00054 0.00745 462 0.078 0.00334 1.53 0.12 0.006 0.008 0.99

Clay Spherical 0.00029 0.02298 447 0.238 0.0034 4.257 <0.001 0.003 0.003 0.99

* a probability of less than 2% that the clustered pattern could result from a random likelihood. LOOCYV = Leave-one-out cross-validation. RMSE = root mean square

error. MAE = mean absolute error. p = Pearson’s correlation coefficient.
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8.2. Appendix B. Bands and indices used in soil salinity studies.
Table 4.B2. Definition of bands and index used to calibrate the models in MSRPS of Guinea-Bissau, West Africa.

Index Definition Index Definition Index Definition Index Definition

B1 Costal Blue S6 Gl (R xNIR) /Gl RSI1 G2 (G2 x Re)*? YRIntl G2 | (G2+Y)2

B2 Blue (B) S6 G2 (R xNIR)/ G2 RSI2 G1 [(G1)*+(Re)*>+(NIR)*]*3 | YRInt2 G1 | (G1 +Y + NIR)/2
B3 Green 1 (G1) SI (B +R)* RSI2 G2 [(G2)*+(Re)>+(NIR)?]*3 | YRInt2 G2 | (G2 +Y + NIR)/2
B4 Green 2 (G2) SI1 G1 (G1 x R)*3 RSI3 G1 [(G1)*+(Re)?’]® YRNDSI (Y = NIR)/(Y + NIR)
B5 Yellow (Y) SI1 G2 (G2 x R)*? RSI3 G2 [(G2)*+(Re)?]"? YRNDVI (NIR - Y)/(NIR +Y)
B6 Red (R) SI2 G1 (G1) 2+ (R)?> + (NIR)?]°? | RIntl G1 (G1 + Re)/2 YBS1 Y/R

B7 Red edge (Re) SI12 G2 (G2)*> + (R)> + (NIR)?]*° | RIntl G2 (G1 + Re)/2 YBS2 (Y -R/(Y +R)

BS§ Near-infrared (NIR) SI3 Gl ((G1)? + (R)»)*? RInt2 G1 (G1 + Re + NIR)/2 YBS4 (Y xR)0.5

NDVI* | (NIR-R)/(NIR +R) SI3 G2 ((G2)?2 + (R)»)*? RInt2 G2 (G1 + Re + NIR)/2 YBS5 G1 (Y x R)/G1

NIR BS§ Intl GI | (G1+R)/2 YRSI1 B/Y YBS5 G2 (Y xR)/G2

SR NIR /R Intl G2 | (G2+R)/2 YRS2 B-Y)YB+Y) YBSI (Y +R)0.5

GCVI (NIR/G)—1 Int2 GI | (G1+R+NIR)/2 YRS3 Gl1 (G1 xY)/B YGS3 (Y xR)/B

NDWI | (G—NIR) /(G +NIR) Int2 G2 | (G2+R+NIR)/2 YRS3 G2 (G2 xY)/B YGSI1 (Y xR)0.5

VARI (G-R)/(G+R-B) RS1 B/Re YRS4 (B xY)0 YGSI2 [(Y)*HR)*+(NIR)?1*?
GRVI (NIR/G) RS2 (B —Re)/ (B +Re) YRSS5 G1 (B xY)/G1 YGSI3 [(Y)*+(R)*]*3
GNDVI | (NIR = G)/(NIR + G) RS3 GI | (Gl xRe)/B YRS5 G2 (B xY)/G2 YGIntl (Y +R)2

NDSI (R —NIR) /(R + NIR) RS3 G2 | (G2 x Re)/B YRS6 G1 (Y x NIR)/G1 YGInt2 (Y + R+ NIR)/2
SAVI (NIR —R)/((NIR +R +0.5) x 1.5) | RS4 (B x Re) %3 YRS6 G2 (Y x NIR)/G2 YNS6 Gl (R xY)/G1

VSSI 2xB3-5(B4+B5/Gx(B3) RS5-G1 (B x Re)/Gl1 YRSI B+Y)0.5 YNS6 G2 (R xY)/G2

S1 B/R RS5-G2 | (B x Re)/G2 YRSI1 GI | (G1xY)0.5 YNSI2 G1 | [(GI)*HR)*H(Y)*]*3
S2 (B—R)/(B+R) RS6 G1 | (Re x NIR)/G1 YRSI1T G2 | (G2xY)0.5 YNSI2 G2 | [(G2)*+R)*H(Y)*]*3
S3 Gl | (GI1xR)/B RS6 G2 | (Re X NIR)/G2 YRSI2 Gl | [(GD)*H(Y)>+(NIR)!1*> | YNInt2 G1 | G1 +R+Y)2

S3 G2 | (G2xR)/B RNDSI (Re = NIR)/ (Re + NIR) | YRSI2 G2 | [(G2)*H(Y)*+(NIR)*]>5 | YNInt2 G2 | (G2 +R +Y)/2

S4 (B x R)%3 RNDVI (NIR —Re)/ (NIR + Re) | YRSI3 G1 | [(G1)*H(Y)?]%S YNNDSI R-Y)(R+Y)

S5 G1 | BxR)/Gl RSI (B +Re)"3 YRSI3 G2 | [(G2)*+(Y)?]°3 YNNDVI (Y —R)/(Y +R)

S5 G2 | BxR)/G2 RSI1 G1 | (G1 x Re)®? YRIntl G1 | (Gl +Y)/2 - -

* NDVI = Normalized Difference Vegetation Index. NDSI = Normalized difference vegetation index. SAVI = Soil adjusted vegetation index. VSSI = Vegetation soil salinity index. S1, SI, RS
and YRS = Salinity index. Int = Intensity index. GCVI = Green chlorophyll vegetation index. VARI = Visible atmospherically resistant index. NDWI = Normalized difference water index. SR =
simple ratio index. GRVI = Green Ratio Vegetation Index. GNDVI = Green light normalized difference vegetation index. Source: (Abd El-Hamid et al., 2023; Aksoy et al., 2022; Barreto et al.,
2023; Bouaziz et al., 2018; Chaaou et al., 2022; Dakak et al., 2023; Golabkesh et al., 2021; Li et al., 2022; Mzid et al., 2023; Shi et al., 2022; Tan et al., 2023; Triki Fourati et al., 2017, 2015; H.
Zhang et al., 2023; Zhou et al., 2022).
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Appendix C. Correlation of EC. data with salinity indices and bands.

Table 4.C3. Pearson correlation (p) between EC. (dS m™") and Satellite indices evaluated

in three study sites in Guinea-Bissau, West Africa.

Index p Index Definition Index p Index p
RNDSI 0,51 YRS2 -0,17 SI1_Gl1 0,11 S5 Gl -0,08
RNDVI -0,51 VSSI 0,16 YRSI2 G1 | -0,11 YRS4 0,08
Clay Raster -0,43 S3_Gl 0,16 YNSI2 G1 | 0,11 S1 -0,07
YRNDSI 0,39 YGS3 0,16 YBS2 0,11 Int2 Gl -0,07
YRNDVI -0,39 | YRS3 Gl 0,15 YNNDSI | -0,11 Int2 G2 -0,06
SAVI -0,37 b4 0,15 YNNDVI | 0,11 RSI 0,06
NDVI -0,37 | YRSI1 G2 0,15 YNSI2 G2 | 0,11 RS5 Gl -0,06
NDSI 0,37 | YRIntl G2 0,14 RSI3_G2 | 0,11 b6 0,06
NDWI 0,34 RS2 -0,14 YRSI2 G2 | -0,11 RS5 G2 | -0,06
GNDVI -0,34 | YRSI3 G2 0,14 RSI2 G1 | -0,11 YGInt2 -0,06
GCVI -0,31 RS1 -0,14 RSI2 G2 | -0,11 | RInt2 G1 | -0,06
GRVI -0,31 b3 0,14 Intl Gl 0,10 | RInt2 G2 | -0,05
YRS6 G2 -0,28 | YRSI1 GI1 0,14 SI1T_ G2 0,10 RS4 0,05
RS6 G2 -0,28 | YRIntl GI 0,14 YGSI2 -0,10 | YRInt2 G2 | -0,05
SR -0,27 | YRSI3 Gl 0,13 Silt Raster | 0,10 | YRInt2 G1 | -0,05
b8 -0,26 | RSI1 GlI 0,13 YBS4 0,10 | YBS5 G2 | 0,04
pc2 -0,25 b5 0,13 YGSII 0,10 | YNS6 G2 | 0,04
YRS6 Gl -0,25 VARI 0,13 Intl G2 0,10 SI 0,04
YRS3 G2 0,23 SI2 Gl -0,13 YGIntl 0,10 pcl 0,04
S6_Gl1 -0,23 pc3 0,13 YGSI3 0,10 S4 0,04
S6 G2 -0,23 | RiIntl GlI 0,12 SI3_Gl1 0,10 | YBS5 G1 | 0,03
Sand Raster 0,23 SI2 G2 -0,12 SI3_G2 0,09 | YNS6 GI | 0,03
Clay+Silt Raster | -0,23 | RSI1 G2 0,12 YBSI1 0,09 | YRS5 G1 | -0,03
RS6 Gl -0,21 | RIntl G2 0,12 b7 0,09 b8 asm 0,03
RS3 G2 0,21 | YNInt2 Gl 0,12 YBSI 0,09 | YRS5 G2 | -0,02
RS3 GI1 0,19 bl 0,12 YRSI 0,09 b2 0,01
YRS1 -0,18 | RSI3 GI 0,11 S2 -0,08 EC. 1,00

S3_G2 0,17 | YNInt2 G2 0,11 S5_G2 -0,08 - -
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8.3. Appendix D. Confusion matrix of EC,. data with salinity indices
and soil texture raster.
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Figure 4.D1. Pearson correlation coefficients between selected satellite indices (above p

> (.30 and -0.30), soil texture raster, and ground-truth EC (dS m™).
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8.4. Appendix E. Importance of features in modeling.

A Feature Importances in Descending Order B Feature Importances in Descending Order
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Figure 4.E2. Analysis of the best satellite indices and soil texture raster contributions
within the RF model was conducted to select the most critical predictor for

ground-truth ECe (dS m™!) estimation in the MSRP, West Africa.
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8.5. Appendix F. General computational flow of the CNN.

A)

B)

&)

D)

E)

Input to the model.
All input vectors represent the standardized features extracted from the data-set.
1D convolutional layer.
al = fWhs xt=t + bh)
Eq. 4.1F
Where a' is the activation layer at layer I, W', b!, are the weights and biases of

the convolutional layer; x'~1

is the input from the previous layer or the initial
input; * denotes the convolution operation; and f is a non-linear activation
function.

Batch Normalization.
l l
a —u
yl _ yl< ) + /31
(cH)2 + €

Where y' is the batch Normalization; u' and (¢*)?are the mean and variance

Eq. 4.2F

calculated over the batch for the layer [; ! and B! are parameters to be learned,
and € is small constant added for numerical stability.
Fully connected layers.
2L = Wlal1 + p!
Eq. 4.3F
a' = f(z")

Eq. 4.4F
Where z! is the input to the fully connected layers [, processed through one or
more such layers; W' and b'are the weights and biases of the fully connected layer
[; and f is the activation function.
Smoot L1 loss function.

109 = {1705 70 hreruise

Eq. 4.5F
Where y is the actual target value and J is the predicted value from the network.
CNN manages errors and learns from the input data to make accurate predictions,
ultimately influencing the performance of the model and effectiveness in

regression tasks.
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Chapter 5

Addressing weather data gaps in reference crop
evapotranspiration estimation: A case study in
Guinea Bissau, West Africa

This chapter was published in Hydrology.
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1. Abstract

Crop water use (ET.) is typically estimated as the product of crop evapotranspiration
(ET,) and a crop coefficient (K¢). However, the estimation of ET, requires various
meteorological data which are often unavailable or of poor quality, particularly in
countries such as Guinea-Bissau where the maintenance of weather stations is frequently
inadequate. The present study aimed to assess alternative approaches, as outlined in the
revised FAOS56 guidelines, for estimating ET, when only temperature data is available.
These included the use of various predictors for the missing climatic variables, referred
to as the Penman-Monteith temperature (PMT) approach. New approaches were
developed, with a particular focus on optimizing the predictors at the cluster level.
Furthermore, different gridded weather datasets (AgERAS and MERRA-2 reanalysis)
were evaluated for ET, estimation to overcome the lack of ground truth data and upscale
ET, estimates from point to regional and national levels, thereby supporting water
management decision-making. The results demonstrate that the PMT is generally
accurate, with RMSE not exceeding 26% of the average daily ET,. With regard to
shortwave radiation, using the temperature difference as a predictor in combination with
cluster-focused multiple linear regression equations for estimating the radiation
adjustment coefficient (kRs) yielded accurate results. ET, estimates derived using raw
(uncorrected) reanalysis data exhibit considerable bias and high RMSE (1.07-1.57 mm d-
1, indicating the need for bias correction. Various corrections methods were tested, with
the simple bias correction delivering the best overall performance, reducing RMSE to
0.99 mm d ! and 1.05 mm d*! for AGERAS and MERRA-2, respectively and achieving a
normalized RMSE of about 22%. After implementing bias correction, the AgGERAS was
found to be superior to the MERRA-2 for all the studied sites. Furthermore, the PMT out-
performed the bias-corrected reanalysis in estimating ET,. It was concluded that PMT-
ET, can be recommended for further application in countries with limited access to
ground-truth meteorological data as it requires only basic technical skills. It can also be
used alongside reanalysis data, which demands more advanced expertise, particularly for

data retrieval and processing.
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2. Introduction

An accurate estimation of the reference crop evapotranspiration (ET,) is critical for
agricultural water resources planning and management (Allen et al., 1998; Pereira et al.,
2015, 2025). ET, quantifies the natural loss of water to the atmosphere, incorporating an
approximation that accounts for both evaporation and transpiration from a reference
surface (Allen et al., 1998; Pereira et al., 2025). The FAO-PM ET, was parametrized for
a hypothetical reference crop with specific characteristics in terms of height (0.12 m),
albedo that reflects 23% and absorbs 77% of the incoming radiation under standard
conditions, and a fixed surface resistance of 70 s m™! (Allen et al., 1998). ET, is essential
for estimating crop water use (ET.) as it represents the climatic demand conditions. Crop
ET is commonly estimated using the FAO approach , which involves multiplying ET, by
a crop coefficient (Kc). The latter considers the differences in characteristics of the crop
under study relative to the reference crop. Therefore, it enables the quantification of water
use by any agroecosystem, landscape, wetland, and riparian ecosystem (Pereira et al.,
2024). Under water or salinity stress, crop ET decreases (Allen et al., 1998; Liu, Paredes,
et al., 2022; Liu, Shi, et al., 2022; Rosa et al., 2016).

The FAO-PM ET, requires data on several weather variables, including maximum and
minimum temperature, shortwave or net radiation, relative humidity or dew point
temperature, and wind speed. The FAO 56 guideline (Allen et al., 1998), which have
recently been revised (Pereira et al., 2025), describes alternative approaches for
estimating missing weather variables data, namely when using temperature data only
(FAO-PMT), making these tools particularly valuable in regions with insufficient weather
stations or low maintenance capabilities (Allen et al., 1998; Pereira et al., 2025). To
improve the accuracy of the ET, PMT estimates, the calibration of the predictors may be

performed for local conditions (Almorox et al., 2018; Paredes, Fontes, et al., 2018;
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Popova et al., 2006; Raziei & Pereira, 2013) or, alternatively, simplifications to the
method can be adopted (Paredes et al., 2020; Pereira et al., 2025). The accuracy of the
PMT approach has been demonstrated in several studies conducted across Africa
(Djaman et al., 2016, 2017; Koudahe et al., 2018; Landeras et al., 2018; Yonaba et al.,
2023), although in many of these cases, adequate observed weather datasets were not
available for a consolidated assessment of alternative approaches. Another commonly
used approach that uses temperature data only for ET, estimation is the Hargreaves-
Samani (HS) equation, earlier developed for the Senegal River Basin (Hargreaves et al.,
1985) and later commonly used (Abdul-salam et al., 2023; Moratiel et al., 2020; Musa &
Elagib, 2025; Paredes et al., 2020). The ET, estimates with HS can also be used with the
FAO K¢-ET, approach despite the need for adjustments.

Various heuristic approaches have also been used to estimate ET, with minimal data
availability, with machine learning (ML) algorithms being among the most widely used.
However, as discussed by Pereira et al. (Pereira et al., 2015), these approaches do not use
the fundamental physics underlying the FAO-PM ET, equation, which is considered
relevant when selecting alternative approaches to calculate ET, when weather datasets
are incomplete. These algorithms leverage training data to model variables for specific
regions or sites (Zhu et al., 2020). However, they have limited applicability as they are
generally not transferable and are only effective for the sites for which they were
developed. Examples of these approaches include support vector machines (SVMs) and
random forest (RF), which are renowned for their accuracy in predictions using limited
input data (Wu et al., 2019; Zereg & Belouz, 2023).

Alternative sources of weather data are those based on observational data with different
spatial and temporal resolutions and different available weather variables. Examples

include the Climate Research Unit Time Series (CRU) (Harris et al., 2020) and
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WorldClim for the globe (Hijmans et al., 2005), E-OBS for Europe (Anwar et al., 2023),
PRISM climate data for the USA (Daly et al., 2008), IberiaO1 (Herrera et al., 2019) for
the Iberian Peninsula, or those provided by (Xavier et al., 2022) for Brazil. For given
weather variables, such as shortwave radiation, satellite data can be obtained, e.g. data
provided by the geostationary Meteosat Second Generation (MSG) system, which
includes the Satellite Application Facility for Land Surface Analysis (LSA-SAF)
(Gebremedhin et al., 2022; Paredes et al., 2021; Trigo et al., 2018).

Other sources of weather data include reanalysis gridded data obtained by integrating
observations from various sources, including ground-based weather stations, ocean
buoys, ships, aircraft, and satellite sensors (Demchev et al., 2020; ECMWF, 2020). This
integration is carried out by modelling and data assimilation systems, which provide
accurate and continuous estimates of climate and meteorological variables (Dee et al.,
2011; Toreti et al., 2019). Their temporal resolution can be hourly, daily, or monthly. The
spatial resolution varies, depending on the data source. One of the most widely used
sources is the ERAS reanalysis, made available by the European Centre for Medium-
Range Weather Forecasts (ECMWF) (Dee et al., 2011; Xue et al., 2019). The AgERAS
dataset, which focuses on agriculture, is derived from this data set. This dataset provides
hourly data with a spatial resolution of 0.1° (Brown et al., 2023; Kruger et al., 2024).
Another often used reanalysis dataset is MERRA-2 version 2, an atmospheric reanalysis
developed by NASA (National Aeronautics and Space Administration). MERRA-2
provides a reanalysis of global climatic and weather information (Rienecker et al., 2011).
Another reanalysis-based dataset is that provided by the National Centers for
Environmental Prediction — National Center for Atmospheric Research (NCEP/NCAR)
(Kistler et al., 2001). Reanalysis data have been used in several studies to estimate ET,

and assess its spatial distribution (Kruger et al., 2024; Martins et al., 2017; Nouri &
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Homaee, 2022; Xi et al., 2023; Zhang et al., 2021). One of the key advantages of using
reanalysis data is that they provides all the weather variables required to calculate ET,
without any gaps (Meng et al., 2022; Vicente-Serrano et al., 2023). However, many
studies have found that these gridded datasets require bias corrections, such as additive
bias correction (Paredes et al., 2021; Paredes, Martins, et al., 2018), simple regional bias
correction (Gourgouletis et al., 2023; Pelosi et al., 2020) and Kalman filtering for
temperature modelling (Pelosi et al., 2017), as well as adequate downscaling methods
(Viggiano et al., 2019) to improve their quality.

The above-cited studies emphasize the critical importance of bias correction, particularly
in regions lacking baseline meteorological information, such as many tropical areas (Dee
et al., 2011), including part of Africa. This is the case of Guinea-Bissau (GB), located in
West Africa, with an economy based primarily on agriculture. GB has limited economic
resources, which has led to a decline in government investment in meteorological and
agricultural information after independence. Although long term weather records exist at
three sites in the country (Bissau, Bafata and Bolama), they are incomplete due to the loss
of documents during the civil war (1998 - 1999), poor resources for digitizing the data
and maintaining the weather stations, and a lack of financial resources for purchasing new
sensors (Ferreira, 2004; Kovsted & Tarp, 1999). However, these sites only cover a small
part of the country as they exclude the most important agricultural areas, regions in the
north affected by drought, humid zones in the south, and the archipelago of Bijagos
(Republic of Guinea Bissau, 2014, 2018; Samuel et al., 2019). This hinders the spatial
quantification of ET, across the country, particularly in agricultural water management
studies (Garbanzo, Céspedes, et al., 2024; Garbanzo, do Rosario Cameira, et al., 2025),

and highlights the need for easy-to-use approaches to cope with reduced weather datasets.
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Therefore, the main objective of this study is to evaluate different approaches for
estimating FAO-PM ET, using only temperature data (PMT). In addition, the study aims
to assess the accuracy of AgERAS and MERRA-2 reanalysis weather datasets to support
the scaling of ET, estimates from field level to regional and national levels. This is the
first study of its kind conducted in Guinea-Bissau, and its novelty lies in the combined
use of ground-truth meteorological observations and reanalysis datasets. The
methodologies developed will be made accessible to GB technical staff, who have diverse
skills levels, namely relative to the use modeling tools aimed at improving water
management in mangrove rice cultivation. Furthermore, the results of the current study
are expected to enhance water resource management across different spatial scales and
may contribute to improved water governance, particularly under conditions of climate

variability and freshwater increasing scarcity.

3. Material and methods

3.1. Climate
The study was conducted in GB, West Africa (Figure 5.1). The study sites were located
mainly in the coastal region (Figure 5.1), where, according to the Koppen—Geiger
classification (Beck et al., 2018; Kottek et al., 2006) , the climate is of equatorial savannah
with dry winter (Aw) but with different life zones as per the Holdridge classification
(Harris, 2014; Holdridge, 1947). The aridity index (Al, Table 5.S2 in supplemental
material), as defined by (UNEP, 1997), is the ratio of the long-term mean annual
precipitation (P, mm) to the (Thornthwaite, 1948)) to the mean annual climatic
evaporation index (CEItn, mm). The northern part of GB is classified as moist sub-humid

(Al ==0.7), while the south of the country has (Al > 1.0).
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Figure 5.1. Location of Guinea-Bissau in West Africa (top), reanalysis grid points within

the country, and distribution of weather stations (bottom).

3.2.Data

3.2.1. Ground truth weather data
Automatic weather stations were installed over well-watered grass at various locations
across the country (Table 5.1, Figure 5.1), situated in open areas, away from trees and
buildings. The ATMOS 41 weather stations (Meter Environment Products, USA) were
mounted on metal poles at a height of two meters above ground level, oriented northward
according to the installation guidelines. Data were recorded every 30 minutes using ZL6
data loggers (Meter Group, Pullman, WA, USA). The stations were regularly maintained
to ensure data quality, including the removal of Saharan dirt and dust, inspection of

battery levels and cleaning of the solar panels on the data loggers, typically every two
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months or whenever malfunctions were detected. Detailed information on weather station

locations (Figure 5.1) and data collection periods is provided in Table 5.1.

Table 5.1. Geographic coordinates, elevation, and data recording periods of the weather

stations in Guinea-Bissau.

Number
Weather Latitude Longitude Elevation Start of Data End of Data
Region of 30 min
Station (°N) (°W) (m) Collection Collection
Records
Cafine  11.214919 —15.174659 6.0 8 April 2021 1 June 2024 45,563
South Quebil  11.270221 —15.236727 8.4 10 March 2021 30 May 2024 16,378
Buba 11.587290 —14.998417  10.9 22 August 2021 30 May 2024 45,193
Malafu  12.014828 —15.020001  24.9 10 April 2021 30 May 2024 48,388
c Enchugal 12.046918 —15.436894  16.6 11 April 2021 29 May 2024 43,768
entral
Bissora  12.220728 —15.444387  15.1 11 January 2022 3 June 2024 41,951
Cacheu 12.258014 —16.157159  21.2 12 January 2022 11 June 2024 42,280
S. Domingos 12.414232 —16.182400  12.5 12 April 2021 4 June 2024 45,132
North Djobel  12.280922 —16.392913 10.0 12 July 2022 5 June 2024 49,978
Elalab  12.246547 —16.443420  10.8 12 April 2021 4 June 2024 45,176
Island  Bubaque 11.299951 —15.831088  29.8 9 January 2022 31 December 2023 34,634

This study was carried out using the daily weather data recorded at each weather station.

Thirty-minute measurements were processed to obtain daily values of maximum and

minimum temperature (Tmax, Tmin, °C), maximum and minimum relative humidity

(RHmax, RHmin, %), wind speed at 2 m height (u2, m s™), and short wave solar radiation

(Rs, MJ m™). In line with common practices in several meteorological services, the RH

measured at 9 a.m. (RHo) was taken to represent the mean daily conditions (RHmean).

Rainfall (mm) data at 30 min intervals (mm) were also available from all weather stations.

3.2.2. Reanalysis weather data

Reanalysis datasets were obtained from two sources: the European Center for Medium-

Range Weather Forecasts (ECMWF), platform AgrERAS, part of the Copernicus project
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(Boogaard et al., 2020), and the Global Modeling and Assimilation Office (GMAO),

platform MERRA-2.

AgERAS is a daily reanalysis dataset provided by ECMWEF, available from 1979 to the
present, with a focus on providing data for agricultural and agroecological studies
(Chevuru et al., 2023; Van Tricht et al., 2023). It is provided at a spatial resolution of 0.1°
% 0.1° (approximately 11 km x 11 km) (Boogaard et al., 2020) and is derived by forcing
hourly ECMWF ERAS data at the surface level. AGERAS includes at wide range of
atmospheric and surface variables. For this study, the following variables were
downloaded from the Copernicus Climate Change Service (C3S) Climate Data Store
(CDS) website: Rs (J m2d™), Tmin and Tmax (K), dew point temperature (Tqew, K), RHo

(%), and wind speed measured at 10 m height (ujo, m s™).

MERRA also has a version tailored for agricultural studies, known as (AgMERRA).
However, this dataset was not used in the present study due to its limited temporal
coverage (1980-2010) (Galmarini et al., 2024; Ruane et al., 2015). Instead, the more
recent product MERRA-2, developed by NASA to replace the original MERRA using a
fixed assimilation system (Rienecker et al., 2011), was used, as it spans from 1980 to the
present. MERRA-2 provides daily weather data at a spatial resolution of 0.5° x 0.625°
(Global Modeling and Assimilation Office (GMAO), 2015a, 2015b). All variables
required for the calculation of FAO-PM ET, were downloaded: Tmin (K), Tmax (K), Tdew
(K), RHy (%), uio (m s), Ry (J m? d'!), and vapor pressure (hPa). The appropriate
conversion of units was therefore performed on both datasets, with the wind speed at 10
meters adjusted to 2 meters in accordance with the recommendation of FAO 56 (Allen et
al., 1998). Further details on the data assimilation system and performance metrics for
AgrERAS are reported by (Hersbach et al., 2020) and for MERRA-2 by (Gelaro et al.,

2017).
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The datasets were accessed using a script written in Python version 3.11 (Van Rossum &
Drake, 2009). The MERRA-2 reanalysis data featured fewer grid centroids (36) compared
to the AgERAS (356), due to differences in spatial resolution between the two data sets.
Both datasets were organized to cover the same period as the observed weather data, from
January 2021 to May 2024 (Table 5.1). The Euclidean distance (straight line between two
points) was calculated between each grid centroid and the weather station locations
(Mardia et al., 1979). A filtering process was applied, and each grid centroid was
classified based on its proximity to the weather stations. Following other approaches in
the literature, the nearest grid point to each station was selected for use in this study
(Paredes et al., 2021; Pelosi & Chirico, 2021; Soulis et al., 2025; Vanella et al., 2022).
Although other methods exist, e.g. multiple linear regression (Paredes, Martins, et al.,
2018) or triangle-based bi-linear interpolation method (Pelosi, 2023), these approaches
have not been shown to outperform the simpler and widely adopted method of using the

nearest grid point to the targeted station.

3.3. Computation of the FAO-Penman Monteith ET,

The FAO Penman-Monteith equation is the most widely used method in agriculture for
estimating the reference crop evapotranspiration (PM-ET,) (Allen et al., 1998; Pereira et
al., 2025). It allows for an accurate determination of the climatic demand conditions as it

integrates various meteorological variables. The daily ET, is estimated as follows:

900 _
T+ 273 Y2 (6 ~ €a) (1)
A+ y(1+ 034u,)

0408A (R, — G) + v
ET, =

where A is the slope vapor pressure curve (kPa °C™); R, is the net radiation at the crop

surface (MJ m? d™); G is the soil heat flux density (MJ m d!), which is negligible at
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daily steps, T is the air temperature at 2 m height (°C); w is the wind speed at 2 m height
(m s7); es is the saturation vapor pressure (kPa); e, is the actual vapor pressure (kPa), es —

ea is the vapor pressure deficit (kPa); and vy is the psychrometric constant (kPa °C™).

The net radiation at the crop surface (Rn, MJ m? d!) is calculated as the difference
between the net shortwave radiation (Rns, MJ m™ d'!) and the net longwave radiation (Rul,
MJ m2 d!), where Ry is calculated as (1 — a) Rs, assuming an albedo (o) value of 0.23 for

the green grass reference crop and Ry is calculated as follows:

Tmax: K4 + Tmin: K4

Rs
R, =0 > (0.34 — 0.14,/e,) (1'35R_so — 0.35) )

where o is the Stefan-Boltzmann constant (4.903 x 10° MJ K* d ™), and Tmax and Tumin are
the daily maximum and minimum temperatures (K), respectively. The mean es for a day
is calculated as the average of the vapor pressure at the maximum and minimum
temperature while e, is estimated from the RHmax and RHmin as follows:

RH RH
eo (Tmin) 1(1)16ax + eo (Tmax) 161]0“1 (3)
€, =
2

where e°(Tmin) (kPa) and e°(Tmax) (kPa) are the saturation vapor pressure at the daily
minimum and maximum air temperature, respectively, and RHmax (%) and RHmin (%) are

the maximum and minimum relative humidity, respectively.

The wind speed data (u2, m s™!) at the standard height of two meters above the ground
level is obtained from that measured at height z (m) through the following logarithmic
transformation:

~ 4.87
2= Y6782 5.42) )

u
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where uz is the wind speed measured at z meters above the ground surface (m s™'), and z

is the height of the measurement above the ground surface (m).

3.4. Calculation of ET, using only temperature data (FAO-PMT)

Several approaches were used to estimate Tqew, U2 and Rs to overcome missing data or
data with poor quality. The predictors and the combination of approaches used in the
current study are detailed in Figure 5.2. For e, computation, and therefore the prediction
of Tgew, the first approach used was straightforward and assumed Tmin as the best predictor
for Tqew (Allen et al., 1998; Pereira et al., 2025). A second approach used either Tmin (for
moist-subhumid sites), or the Tmean — ap (for humid sites) with ap=2, both depending on
the location aridity index (Al) (Paredes et al., 2021; Pereira et al., 2025; Todorovic et al.,
2013). Therefore, the first step was to calculate the already mentioned Al for each
location. The third approach consisted of the numerically optimization of the value of ap
by minimizing the Root Mean Squared Error (RMSE) using the “L-BFGS-B” algorithm
(See Supplementary material S1). To overcome the missing u» data, two predictors were
used, the average local or regional (U2 avg) or the world average value (U2 gef= 2 m s™)

(Allen et al., 1998; Pereira et al., 2025).

177



Input weather data
g Precipitation
Aridity Index
@ «@ature

|
Dry subhumid Moist-subhumid | Humid 3
1 P 1
Tyew Predictors i| T";i" ] | Tmeeml'2 ] |Tmea"_aD’ :)ptlmlzed ]E
l ! { 1 { ¥
u, default
u, predictors | Yo avirage | | 2 l |
Long-term
M& Doy
R, predictors kgs from Global kgs from climate-focused kgs from optimized cluster-
(Kps, Eql. 4) MLR eq. MLR eq. focused MLR eq.

FAO-PMT Reference crop evapotranspiration

Figure 5.2. Flowchart of the approaches used to estimate reference crop
evapotranspiration using the FAO-PM method based on temperature only

(PMT). (MLR — multiple linear regression).

The shortwave radiation was estimated using the following equation (Hargreaves &

Samani, 1982):

Rs = kgs (Trmax — Tmin)O'5 R (5
where ks is the empirical adjustment coefficient (°C*), Tmax and Tpmin are the maximum

and minimum air temperature (°C), and R, is the extraterrestrial radiation (MJ m2 d™).

The estimation of krs was carried out using three different approaches (Figure 5.2). The
first two were based on the use of pre-established multiple linear regression (MLR)
equations derived from long-term data collected from 555 weather stations across the
Mediterranean. These MLR equations were derived by testing the average daily
temperature difference (TDavg), the daily average local or regional wind speed (u> avg),
and the daily average relative humidity (RHave) as predictors of kgrs using a set of
goodness-of-fit indicators as detail by Paredes et al. (2020). Therefore, one MLR global
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application across all climate types (global), and the other tailored to specific climate
conditions (climate-focused), based on the Al (Paredes et al., 2020; Paredes & Pereira,

2019; Pereira et al., 2025), as follows:

Global equation (all climate types): kRS = 0.365 — 0.0099 TDavg + 0.0194 U, avg — 0.0017 RHan (6)

Climate focused equations:

Humid climates (AI>1.0) krs = 0.519 — 0.0104 TDavg +0.0188 u, avg — 0.0035 RHavg (7a)

Moist locations (0.50 <AI <1.00) kgs = 0.396 — 0.0105 TD,yg + 0.0186 u; 5y — 0.0021 RH,q (7b)

where TDayg 1s the average daily temperature difference Tmax — Tmin, U2 avg 1S the daily
average local or regional wind speed, and RHay, is the daily average relative humidity, all

computed using a long-term data set.

The third approach was developed to improve kgrs estimates and, consequently, the ET,
pmT estimates. New adjusted MLR equations were derived at the cluster level (cluster-
focused) using the same kgrs predictors as in the previous approaches (TD avg, HRavg, 12
avg). The optimization was performed using the “L-BFGS-B” algorithm, aiming to
minimizing the root mean square error (RMSE) between the ET, and the ET, pmt (see
supplementary S1 algorithm with the aim of minimize the root mean square error (RMSE)
between the ET, and the ET, PMT (see Supplementary material S1). Therefore, krs was
considered treated as a cluster-specific constant of proportionality, derived through MLR
using long-term mean values of the referred predictors. Due to the relatively short weather
dataset (< 20 years), it was divided into calibration and validation subsets, comprising

70 % and 30 % of the data, respectively.

All the approaches were applied at two levels: individually at each site, and across groups

of sites as defined by the cluster analysis (Section 2.5).
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3.5. Data quality assurance and quality checking (QAQC)
All the weather datasets used in this study were subjected to prior quality assurance and
control procedures to ensure consistency, integrity and quality for ET, calculations. This
step is mandatory to avoid error propagation into ET, calculations. To this end, a custom
script was developed to analyze data behavior through visual diagnostic tools including
Q-Q plots and the normal probability plots (qqnorm), to identify data patterns and trends.
Given the tropical location of the study, outliers were removed by applying a threshold
of 3.5 times the interquartile range (IQR) below the first quartile (Q1) and above the third
quartile (Q3) (Di Ciaccio et al., 2012; Dodge, 2008). This procedure aimed to exclude
extreme values likely resulting from measurement errors that could significantly bias the
analysis. Subsequently, the datasets were tested for mean homogeneity, trend, and
variance homogeneity tests, following established statistical procedures (Allen, 1996;

Levene, 1960; Montgomery & Runger, 2011; Pereira et al., 2025).

Wind speed data were specifically examined for prolonged periods of nearly constant and
low values (<0.5 m s™), which may indicate anemometer malfunction or a numerical

'offset’ in the sensor calibration.

Shortwave radiation data (Rs, MJ m™ d') were evaluated following the procedure
recommended by (Allen, 1996, 2008). The R values were compared with estimated clear-
sky solar radiation (Rso, MJ m? d!) for each location, with Ry, calculated as follows

(Allen et al., 1998; Pereira et al., 2025):
Reo = R, (0.75 + (2 X 1075 7)) (8)

where R, is the extraterrestrial radiation (MJ m d™!') and z is the weather station altitude

(m) (Table 5.1). R, calculation method is detailed in (Allen et al., 1998).
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The R¢/Rso ratio was calculated as the highest recorded observation within each 15-day
period. This ratio was then used to adjust the remaining Rs observations by dividing each
observed Rs by the ratio calculated for the highest record in that period. This procedure
was systematically applied across the entire dataset for each weather station. All
calculations and analyses were carried out using R statistical software version 2025.05.1
+513 (R Core Team, 2024). This tool performs functions similar to those of the

agweather-qaqc software (Dunkerly et al., 2024).

Relative humidity values were plotted against air temperature throughout the day to check
for inverse behavior. RHmax values were inspected to determine whether they approached
saturation or were no more than 3-5% higher in the early morning or during rain events,
indicating the need to recalibrate the sensors. In addition, RH records were evaluated for

consistency on rainy days, when RH values should typically exceed 95%.

A rigorous data filtering process was applied, retaining only those dates with complete
records for all variables required for ET, estimation (Equation 1). This ensured
homogeneity across all sites. Once homogenized, the data were subjected to the Shapiro—
Wilk test to assess the normality of distributions for subsequent analyses. To identify
relationships between sites, a comparative analysis of climatic variables was performed
using the non-parametric Kruskal-Wallis test (Alvo & Yu, 2018; Conover, 1999),
followed by pairwise comparisons using the Bonferroni method using a significance level
0f0.01 (a=0.01 indicates a 1% maximum probability of committing a Type I error across
all comparisons when performing multiple statistical tests). This approach provided a
robust evaluation of whether significant differences existed among sites. The same data
filtering process was applied for the cluster analysis, ensuring that only data common to
all sites were used. The sites were then normalized and grouped, and a distance matrix

was calculated. A dendrogram based on site altitude guided the selection of site groups
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(Kassambara, 2017). The optimal number of clusters was determined using the Elbow
method, which suggested K=5 (K represents the number of clusters into which the data
was divided), indicating that the data naturally grouped into five distinct clusters (Syakur
et al., 2018; Thorndike, 1953). Hierarchical clustering then identified the four final site

groups.

3.6. Bias correction of reanalysis-based ET, estimates
To improve the accuracy of ET, estimates derived from reanalysis data (ETo rean) at both
individual sites and cluster levels and to support the subsequent application of gridded
data for regional ET, estimation (Céspedes et al., 2025; Garbanzo, Céspedes, et al., 2024,
2025; Garbanzo, do Rosario Cameira, et al., 2025), four correction methods were
implemented. Rather than adjusting the underlying meteorological variables used in the
calculation of ET,, these correction techniques were applied directly to the reanalysis-
based ET, estimates (Paredes, Martins, et al., 2018). The corrections methods included:
linear model (LM) adjustment, slope correction, robust linear modelling, and simple bias
correction. Each correction was applied at both the individual site level and across groups
of sites defined by the cluster analysis. Further details on each correction method are

provided below:

(A) The adjusted linear model correction (ALM.) involved fitting a linear regression

between ETo rean (¥) and ET, obs (X) as follows:

y=Bo+B1-X+e 9)
where Po is the regression intercept, 1 is the slope, and ¢ represents random error

term (Bapat, 2012).
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The resulting intercept and slope values were then used to adjust the ET, for each site.
The ET, rean values were corrected for both systematic bias and scale error

(Montgomery & Runger, 2011) by subtracting the intercept and dividing by the slope.

(B) The slope correction (Sc) method involved fitting a simple linear regression (LM)
model between the ET, rean and ET, obs Values, with the intercept of 0 (S, = 0). Once
the model was fitted, the slope was calculated and applied as a correction factor. Each
ET, rean value was adjusted by dividing it by the estimated slope (ET,/ slope =
ETo rean_adjusted) (Bapat, 2012). This correction was applied individually to each site
and aimed to compensate for systematic bias identified in the relationship between

reanalysis and observed data.

(C) The robust linear model correction (RLM.) followed a similar principle to the slope
correction, but employed a robust linear regression instead of the ordinary least
squares method. Unlike standard linear regression, which minimizes the sum of
squared residuals, RLM. minimizes a loss function that is less sensitive to large
deviations (Bapat, 2012; Huber & Ronchetti, 2009). In this study, the Huber M-
estimator was used, implemented through the 'rlm' function in the R software version
2025.05.1 +513. Fitting was carried out using integrated weighted least squares
(IWLS). The Huber function addresses a convex optimization problem and provides
parameter estimates that are more robust in the presence of outliers. As with the slope
correction, the new S7'™ (means the updated or robust slope coefficient obtained
from this Huber-based fitting procedure) was used to fit ETo rean, reducing the
influence of extreme values on the correction process, which are common in tropical

regions. Therefore, the corrected ETo rean is estimated as follows:
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E:’1-‘0 rean

ETo rean corr = B l (10)
1rlm

(D) A simplified bias correction was applied to adjust ET, rean at different sites. The

simplified BIAS correction (BIAS.) was calculated as follows:

n

1
BIASc = HZ(ETO rean,i — ETO ObS,i) (1 1)

i=1
where n is the number of observations per site, ET, y¢qn; Tepresents the reanalysis
values for the i-th observation, and ET, , ; is the corresponding observed value. The
new estimated ETo rean_conBias Was calculated by subtracting BIAS. from each daily
ETo rean values. This correction aimed to eliminate systematic deviations inherent to

the original estimates.

3.7. Accuracy assessment
To assess the accuracy of the tested approaches, a set of goodness-of-fit indicators
(Paredes et al., 2021; Pereira et al., 2015) was employed to compare the observed (O; =
ET, obs) and estimated (P;i =ET, pmt or ETo rEAN) Values. The regression coefficient (bo) of
a forced-to-the-origin (FTO) linear regression was used to assess the proportionality
between the estimated and observed ET, values. A value of vo close to 1.0 indicates that
the estimated and observed ET, values are statistically similar. A by < 1 suggests
underestimation, while a bp >1 suggests overestimation. The coefficient of determination
(R?) from an ordinary least squares (OLS) linear regression was used to assess the degree
of dispersion of the O; and P; pairs along the regression line. R? represents the proportion
of variance in the observed data that is explained by the estimation approach. Values of
R2approaching 1 indicate a strong linear relationship between the observed and predicted

values, and hence a better model fit. To quantify estimation errors, the root mean square
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error (RMSE) was calculated, providing an overall measure of the differences between
O; and P;. Additionally, the normalized root mean square error (NRMSE, %) was
calculated as the RMSE divided by the mean of the observations (0). Lower RMSE
and/or NRMSE values indicate greater estimation accuracy. Two further indicators were
used to assess the systematic bias of the estimates, the BIAS and the percentage bias
(PBIAS, %). BIAS was calculated as the average difference between the observed and
predicted values, while PBIAS was obtained by dividing BIAS by the sum of the Oi. The
positive values of BIAS and PBIAS indicate a tendency towards overestimation, whereas
negative values indicate underestimation. Values close to zero suggest lower systematic
bias in the model's predictions (Montgomery & Runger, 2011). All goodness-of-fit

indicators were calculated using R statistical software (R Core Team, 2024).

3.8. Spatial variability of ET, in Guinea-Bissau
As Figure 1 clearly shows, there are few weather stations in the country, most of which
are in western Guinea-Bissau. Furthermore, the distribution of stations varies greatly
between regions. Following a thorough evaluation of the two reanalysis datasets, the one
demonstrating superior performance was selected to estimate ETo at all gridded centroids

across the country, to overcome this lack of data.

Initially, ET, was calculated using the raw reanalysis data. These values were
subsequently corrected using the most appropriate method identified in the study, with
adjustments applied to each centroid based on its proximity to the most influential weather
station. The mean annual cumulative ET, for the period 2021-2023 was then estimated
and mapped using ordinary kriging. Spatial autocorrelation analysis was conducted using
the Global Moran's I statistic, together with Z-score and P-value calculations for the

annual ET, (Table 5.S8), following a methodology similar to that used for soil salinity
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mapping by (Garbanzo, Céspedes, et al., 2025). All special analyses were carried out
using ArcMap 10.8.2 and the Geostatistical Analyst (GS+) tool. In addition, RStudio
version 2025.05.1 +513 was used to compute the goodness-of-fit indicators for the

interpolated maps.

4. Results and discussion

4.1. QAQC assessment

The results of the tests for mean homogeneity, trend, and variance homogeneity of the
ground-truth data relative to Tmax and Tmin, RH, and uy are shown in Table 5.2. The results
of the Mann—Kendall test showed that none of the variables exhibited statistically
significant trends, as the z-values were close to zero and the p-values were greater than
0.05. The Wilcoxon Rank-Sum test was then used to compare the central tendencies of
the data from different locations. All variables yielded p-values above the 0.05
significance threshold, indicating that there were no significant differences in median
values between the locations being compared. The analysis of the equality of variances
across different locations (Levene's test) showed that all p-values exceeded 0.05,
suggesting homoscedasticity (equal variances) across the dataset. Overall, the results of
the statistical tests demonstrate that the analyzed meteorological variables are stable over
time and comparable between locations. They also show that the variables exhibit
consistent variability and are unaffected by outliers or measurement errors at all sites.

Therefore, they can be used to estimate ET,.
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Table 5.2. Statistical test applied-mean homogeneity (Mann-Kendal test), trend analysis

(Wilcoxon rank-sum test), and variance homogeneity (Levene’s test) for

weather variables used in for calculation the ET, in Guinea-Bissau.

Variable Mann—Kendall Test Wilcoxon Rank Test Levene’s Test
Z-Value p-Value Rank—W p-Value F-Value p-Value
RHav,g 0.09 0.47 124.70 0.43 1.56 0.27
RHwmax 1.22 0.25 96.30 0.27 3.51 0.30
RHwin 0.07 0.55 141.10 0.52 3.14 0.34
Tavg 1.02 0.44 97.40 0.37 0.58 0.54
Tmax 1.57 0.21 77.05 0.14 1.39 0.47
Thin -0.07 0.56 133.90 0.62 1.17 0.44
Wind speed 1.64 0.11 68.10 0.07 2.94 0.23

Additionally, Rs was checked and corrected as necessary, and examples of this correction

are presented in Figure 5.3. These examples demonstrate the need for Rs correction due

to inadequate pyranometer sensor calibration.
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7. Elalab Rs Corrected
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Figure 5.3. Examples of daily shortwave radiation (Rs) measured data (+) and estimated
Rso dynamics (~) before and after correction in different locations of Guin-

ea-Bissau—Elalab (north), Malafu (central), and Cafine (south).

4.2. Meteorological characteristics of the studied sites
A high variability in the different weather variables used for the calculation of ET, was
observed among the different sites in GB (Table 5.3). The sites with the significantly (a
= 0.01) highest temperatures were Bissora, Cacheu, and Buba. The sites with the lowest
temperatures were Bissora, Cacheu, and Malafu. The results indicate that Bissora and
Cacheu have the highest thermal amplitude among the studied locations, while Bubaque
has the lowest thermal amplitude significantly (a = 0.01). This trend was similar when

the average daily temperature difference (TD) was analyzed. From one perspective, the
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site with the significantly (o = 0.01) highest RH value was Cafine, which was the most
humid site in the country. On the other hand, Bissora had significantly lower RH values
(RHmin: 49.9% and RHavg: 67.3%; a=0.01), and was therefore considered the least humid
site compared to the others. Buba presented contrasting humidity conditions. Djobel was
the windiest location (U2 ave = 2.1 m s!), while Bissora was the least windy location (uz

ave=0.7 m s1), both with significant differences (0. = 0.01) relative to the other sites.

Table 5.3. Weather characterization of various locations in Guinea-Bissau based on the
mean daily maximum (Tmax), minimum (Tmin), and average temperature
difference (TDavg); maximum (RHmax), minimum (RHmin), and average (RHavg)

relative humidity; and average wind speed (u2 avg) for the period 2021-2023.

. Twmin Tmax TDavg RHmax  RHmin RHayvg U2 avg

St °C °C °C % % % m s
Cafine 22.9b 31.7d  9.5bc 99.1a 68.9a 78.8 a 1.3¢
Malafu 21.5f 33.3bc  13.3ab  98.6b 62.2bc 752D 0.8f
Djobel 22.5bcd  32.7c 10.8b 98.8b 59.8¢cd 77.7a 2.1a
Enchugal 21.8de  33.1bc 12.1ab 93.7¢ 57.8de  70.5¢ 0.9¢
Buba 22.6cde  33.3ab 12.1ab  99.2ab 55.8¢ 75.0b 1.6¢
Elalab 22.6bc 31.9d  10.5b  92.9cd 56.1e 713 ¢ 1.7b
Cacheu 21.5¢f  33.4ab 13.2a 92.7d 55.5¢ 70.1 ¢ 1.1d
Bubaque 24 3a 30.8¢ 6.8¢ 92.3d 67.5ab  76.8 ab 0.8f
Bissora 20.3f 34.2a 14.8a 89.4¢ 49.9f 673 ¢ 0.7g
S.Domingo 19.8f 33.7a 13.9a 94.8¢c 49.3f 71.9¢ 0.8f
Quebil 222cd  33.2ab  11.0b 88.7¢ 40.4¢g 64.6d 0.8f
Shp_wilk <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
n 492 492 492 492 492 492 492

i} <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Note: means followed by the same letter do not represent significant differences; n = number of common
days for all sites compared. o = Bonferroni test with an a = 0.01 using Kruskal-Wallis test. Shp wilk =

Shapiro—Wilk test.

The dendrogram generated by the cluster analysis identified three distinct groups based

on the accumulated precipitation and ET, at each site (Figure 5.4). These groups were
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formed according to their position in the dendrogram and the geographical proximity of
the sites. The first cluster included Buba and Cafine; the second included Malafu, Cacheu,
and Enchugal; and the third included Elalab, Djobel, and S. Domingos. These clusters
represent the southern, central and northern regions, respectively. As mentioned above,
Bissora presented contrasting weather conditions, and did not fit into any cluster within
the analysis. Its inland-like location resulted in distinct weather characteristics. Bubaque
was also not included in the cluster analysis as it is located on an island. Quebil was
excluded from the cluster analysis due to a lack of observations relating to sensor
malfunction problems, which began in mid-2022. However, it was included in the ET,

estimates using the available weather data.

In Guinea-Bissau, there is considerable climatic variability between different sites and
this study demonstrated sensitivity in identifying moist sub-humid and humid areas,
regions with greater thermal amplitude, and sites with variable wind patterns (Table 5.2).
Tropical climates are variable, because they are frequently influenced by tropical storms
(Broccoli & Manabe, 1990; Hartshorn, 2013). These regions typically experience two
well-defined seasons, namely the rainy season and the dry season, but with high
interannual variability (Frank & Young, 2007). Subsistence agriculture is highly
dependent on the behavior of the rainy season, particularly for the Mangrove Swamp Rice
production in the country (Garbanzo, Cameira, et al., 2024; Garbanzo, do Rosario
Cameira, et al., 2025; Linares, 2002). However, this seasonality is becoming increasingly
unpredictable, with global warming exacerbating variability, particularly in rainfall
distribution patterns and intensity (Mendes et al., 2025; Mendes & Fragoso, 2023). As a
result, these areas are becoming increasingly vulnerable, making sustainable agricultural
production more challenging (Céspedes et al., 2025; Temudo & Cabral, 2023).

Appropriate management of water resources is therefore necessary.
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Figure 5.4. Dendrogram of a hierarchical clustering of the selected sites. Clustering was
performed using cumulative rainfall and ET, for 2021-2023 and site elevation,

considering their spatial distribution in Guinea-Bissau.

4.3. FAO-PM ET, using temperature data only
As previously stated, one of the new approaches for humid climates consisted of
optimizing the ap value used in the prediction of Tgew from Tmean. The results showed that
ap values ranged from 2.5 °C to 5.0 °C, depending on the location, with an average ap of
4.8 °C when used alongside with uz avg. When the u2 ¢er was used instead, the optimized
ap values ranged from 1.5 to 5.0°C, with an average of 4.5 °C. These results are consistent
with those reported by (Qiu et al., 2021) for humid climates in China, with ap values of
5.14+1.33°C. Similarly, (Paredes, Fontes, et al., 2018) reported ap values ranging from

1.5 °C to 4 °C for the humid oceanic islands of the Azores, Portugal.

The new cluster-focused MLR equations, which were derived from observed weather
datasets by minimizing RMSE, are presented in Table 5.4. The statistical indicators

191



related relating to the test and validation datasets are presented in Table 5.S3 of the
Supplemental material. All the considered variables (TDayg, U2 avg, and HRayg) contribute
differently to the estimation of kgrs but play complementary roles. As with the global
(Equation 6) and climate-focused MLR equations (Equations 7a and 7b), and in line with
the findings of (Paredes & Pereira, 2019), TDayve has a negative regression coefficient
associated with the loss of long-wave radiation when TDayg is high. The impact of uz avg
on kgs values is positive and may be related to the transport of air moisture masses in
windy conditions, leading to a clearer atmosphere. The impact of RHayg on the krs value
is negative, representing the influence of cloudiness and air moisture. This is consistent
with previous findings in other parts of the world (Almorox et al., 2018; Paredes, Fontes,
et al., 2018; Paredes & Pereira, 2019; Pereira et al., 2025). It should be noted that the
cluster-focused MLR regression to the origin presents a small range of 0.409-0.416,
while the regression coefficients are relatively similar among the clusters (Table 5.4). The
other two locations, which were not within the three clusters, present slightly different

regression coefficients. Table 5.4 shows the krs values estimated for each cluster.
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Table 5.4. Cluster-focused optimized predictive multi-linear regression equations for estimating krs values and respective values.

Minimized
Cluster Predictive equations KRs RMSE Eq.
(°C%)

1 Cafine, Buba, Quebil kgs = 0.410097 — 0.009323 TDqyg + 0.021961 Uz, — 0.001902 RHayg  0.196  7.9x 107 (12)
2 Enchugal, Cacheu, Malafu kgs = 0.415814 — 0.009169 TD,,q + 0.022404 Uz,ye — 0.001868 RH,yg 0.183 1.1x10° (13)
3 Djobel, Elalab, S. Domingo krs = 0.409351 — 0.009369 TD,yg + 0.021829 Uz,yg 0.001911 RH,yg 0.208 56x107 (14)
Bissora kgs = 0.418652 — 0.009110 TD,y, + 0.022572 Uzaye — 0.001855 RH,yq 0.174 9.4x 107 (15)

- Bubaque krs = 0.416080 — 0.009035 TD,,¢ + 0.022784 Uzpye — 0.001840 RH,yg 0.232 29x10° (16)

ks — short-wave radiation empirical adjustment coefficient (°C3); TDaye — long term average temperature difference, i.€. (Tmax — Tmin ); U2avg — lOng term average

local wind speed (m s™') measured at 2 m height; RHay, — long term average relative humidity.
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The goodness-of-fit indicators for the different approaches tested for estimating ET, using
ground-truth temperature and u, data, i.e. the FAO-PMT ET, approach, are shown in
Table 5.5, and the ranges of each indicator are presented in Table S4. It was found that
the climate type of the site influenced the results. For the moist sub-humid locations, i.e.
those sites located in the north of GB, the best predictor for krs was, as expected, the value
derived from the optimized LMR value (Table 5.5); for uz the best predictor was the
regional/local average u> (uz avg) value. This combination resulted in no tendency to over-
or underestimation of ET, (bo = 0.98) and yielded acceptable errors in estimates, with
RMSE of 0.80 mm d' and NRMSE of 16.5%. However, small and no significant
differences in estimates were found obtained when uz qef Was a used as predictor, with RMSE

of 1.08 mm d' and NRMSE of 22.5%.

The second-best approach was to use either the global (Eq. 6) or the climate focused MLR
(Eq. 7a and 7b) to estimate krs in combination with the u ¢f. For this set of sites, there
was no significant difference (p<0.05) between using the climate-focused equations and
using the global MLR, with RMSE of 1.04 mm d™!' and 1.00 mm d!, and NRMSE of
21.5% and 20.5%, respectively (Table 5.5). The results also showed that using uz avg did
not improve predictions of krs when either global or climate-focused MLR equations are
were used. This is because it led to an increase in RMSE and NRMSE, which was not
only statistically significant but also resulted in a large underestimation of ET,, with by
values decreasing to 0.82 and 0.79 when the global and climate-focused MLR equations

were used, respectively.
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Table 5.5. Goodness-of-fit indicators used to compare PM-ET, with ET, pmt Wwhen using

Tmin Of the Tmean @ predictor of Tqew, When krs was calibrated for each site,

when computed with the global Equation 6, or with the climate-focused

Equations 7a and 7b, when using the default or the average local u, value, for

the eleven sites of Guinea-Bissau.

Predictors Goodness of fit indicators
Climate RMSE * NRMSE * PBIAS *
Tdew KRs uz bo * R2* BIAS *
(mm d) (%) (%)
Default [0.93 abc  [0.96 a 1.00 ab 20.59 ab -0.28 be -5.83 abc
Global
Avg  [0.82 ab 0.97 a 1.13 ab 23.62 ab -0.78 a -16.40 ab
'E Default |0.90 abc  [0.96 a 1.04 ab 21.5 ab -0.42 abc  |-8.4 abc
= Tmin |Climate
i lAvg  0.79 a 0.97 a 1.24a 25.73 a -091ab [19.17a
E o Default |1.07 ¢ 0.97 a 1.08 ab 22.53 ab 0.43 ¢ 9.28 ¢
Rz ptm
§ Avg  10.98 be 0.98 a 0.80 b 16.49 b -0.01 bc  -0.33 bc
Clobal Default |0.92 abcde(0.97 a 0.87 abcde 18.61 abecde  |-0.36 abcede -6.78 abede
oba
lAvg  (0.82 abc  [0.98 ab 1.03 abc 22.01 abc -0.76 abc  |-16.22 abc
Default [0.97 bede [0.97 ab 0.86 abcde 18.32 abcde [-0.06 bede |-1.22 bede
Tmin |[Climate
Avg  [0.88 abcde [0.98 ab 0.87 abcde 18.63 abcde  |-0.48 abede [-10.22 abede
o IDefault |1.07 e 0.97 ab 0.91 abcde 19.31 abede [0.38 ¢ 8.12 ¢
ptm
IAvg 098 cde [0.98 ab 0.68 de 14.60 de -0.01 cde [-0.21 cde
Default [0.86 ab 0.98 ab 1.12 ab 23.82 ab -0.86 ab -18.33 ab
Global
Avg [0.78 a 0.98 ab 120 a 2543 a -0.97 a -20.68 a
Default [0.86 abcd [0.98 ab 0.95 abcde 21.11 abcde [-0.57 abed |-12.15 abed
Tmean - 2 [Climate
lAvg  (0.85 abed [0.98 ab 0.99 abcde 21.14 abcde |-0.66 abed [-14.03 abed
o IDefault |0.97 becde  [0.98 ab 0.72 bede 15.42 bede -0.09 bede |-1.83 bede
ptm
Avg  [0.96 abcde [0.98 ab 0.71 cde 15.10 cde -0.14 abcde [-2.95 abcde
Clobal Default [0.91 abcde [0.98 ab 1.02 abcde 16.64 abcd  [-0.33 abcde |-6.91 abcde
oba
lAvg  (0.82 abed [0.98 ab 1.02 abed 21.72 abcde |-0.75 abed [-15.91 abed
Tmean-ap I IDefault |0.95 abcde [0.98 ab 0.72 abcde 15.31 cde -0.15 abcde |-3.10 abede
imate
(ap opt) Avg  0.91 abede [0.98 ab 0.78 cde 16.63 abcde |-0.33 abcde |-6.91 abcde
= o Default |0.99 de 0.98 ab 0.70 cde 14.90 cde 0.03 de 0.57 de
ptm
E IAvg  [0.99cde (098D 0.67 e 14.33 ¢ 0.02 cde  [0.47 de

Tqew = dew point temperature; krs =shortwave radiation empirical adjustment coefficient; u, = wind speed

at 2 m height; Global = global multiple linear regression (Equation (6)); Climate = climate-focused multiple

linear regression (Equations (7a) or (7b)); Optm = cluster-focused multi-linear regression (Equations (12)—

(16)); Notes: means followed by the same letter are not significantly different (o < 0.05) according to the

Kruskal-Wallis test; The most effective approach is highlighted in grey, while bold numbers indicate the

least error in estimates.
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The results for the humid sites (Table 6.5) showed that, similarly to the moist sub-humid
sites, the best predictor was the one resulting from the optimized MLR combined with
the uz avg. However, there was no significant difference (p<0.05) in the RMSE values
using the tested Tgew predictors, i.e., Tmin or the adjusted Tmean With either ap=2 or
calibrated ap value, with RMSE of 0.68 mm d!, 0.71 mm d”!, and 0.67 mm d,
respectively. When analyzing the results in terms of NRMSE, using the adjusted ap value
led to statistically different values, but there were few improvements in the results:
NRMSE was 14.3%, compared to 14.6% with Tmin and 15.1% with Tiean-2. There were
also few differences in the other goodness-of-fit indicators, except for bo, which showed
a clear tendency towards underestimation when u; ave Was used with either the global or
the climate-focused MLR. These results showed that optimizing the predictors leads to
very good results, but this approach is only possible when a good data set is available,
hence uncommonly. Moreover, for the optimization approach (L-BFGS-B) applied in all
the studied sites (Supplementary S1), there was a general tendency for slight
underestimation when using Uzave, distinguishing these results from other studies that
relied on trial-and-error calibration of the T4ew and Rs predictors (Paredes et al., 2020;

Raziei & Pereira, 2013; Todorovic et al., 2013).

The global LMR and the u deaf, results showed the advantage of optimizing the ap value
when using Tmean-ap as Tdew predictor in relation to the use of the ap = 2 °C, as the latter
leads to a clear under-estimation of ET, (bo=0.88) and higher RMSE (0.89 mm d! vs 0.71
mm d'). The use of Twmin as the Tqew predictor also revealed also good results with an
RMSE of 0.83 mm d'. Overall, the results for the humid climates showed a limited
advantage in adjusting the Tmean as a Tdew predictor, when combined with the use of the
global or climate-focused equations using through the u default value, with NRMSE

ranging from 16.6% to 23.8% and 15.3% to 21.1%, respectively.
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The results of using the climate-focused LMR equations showed that these had an
advantage over the global equation, but it was not statistically significant (o > 0.05). This
advantage resulted from a decrease in the underestimation, as well as in the RMSE and
NRMSE. In such cases, it is beneficial to use Tmean rather than Tmin the Tqew predictor
considering that there are lower errors in the ET, estimates. As with the global LMR,
there is a slight advantage in adjusting the ap value. However, the improvements were
not significant, and therefore, the Tmin should be used as a predictor of Tgew in humid

climates, with these findings agreeing with those of FAOS56rev (Pereira et al., 2025).

Selected examples of comparison results between ET, pmt and PM-ET, when the analysis
is focused at the cluster level are shown in Figure 5.5 and Table 5.S5. Examples also
include the locations that were excluded from, the clusters Bissora (moist sub-humid) and
Bubaque (humid). The scatter plots in Figure 5.5 demonstrate the strong correlation
between ET, pmt using uz qef and the various MLR equations, as well as PM-ET,. The
plots show that ET, pmr slightly underestimates PM-ET, in Clusters 1 and 2, as well as in
Bissora, when either the global or climate-focused equations are used to predict kgs.
Furthermore, using the cluster-focused equations did not offer any advantages in these
locations as the RMSEs were higher. Conversely, Cluster 3 and Bubaque show high
underestimation when using the same predictors for krs estimation, demonstrating the

advantage of using cluster-focused equations in this case.

Table 5.S5 provides the results of the goodness-of-fit indicators for all approaches when
the analysis was performed at the cluster level. The results show, as in the previous
analysis, that the best approach was to optimize the predictors of Tdew and kgs (i.e. ap and
cluster-focused MLR). Therefore, the results are discussed with a focus on the previous
simplified approaches. The first cluster included only locations with humid climates, and

the results showed that using Tmin relative to Tmean-2 as a predictor of Tgew was
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advantageous. Additionally, there was a clear advantage from using the climate-focused
MLR alongside u> ger. For the second cluster, which included both humid and moist sub-
humid locations, the results showed that the best approach was to use Tgew predictors
according to the Al, alongside with the climate-focused MLR equations and u> der. The
use of uz avg yielded a higher RMSE and a stronger tendency to underestimate ET,. The
third cluster comprised only moist sub-humid locations and showed the poorest results in
terms of errors of all the clusters. In this case, the second-best approach was to use u def
alongside either the global or climate-focused MLR, as there were no significant
differences. For Bissora (moist sub-humid), the second-best approach was to use the
climate-focused equation with u; ¢er, while for Bubaque, despite being classified as humid,

Tmin Was a better predictor of Tqew, With w2 ¢er being the best predictor over uz avg.

198



Cluster 1

Cluster 2

Cluster 3

Bissora

Bubaque

krs from global equation
10

R* =087 R
RMSE =0.86 s
~ _ ’
- 84 y=092x
hel s
£ o S,
~— - [0
5 49 2
o K
o s
E 2- & AN
0.
0 2 4 6 8 10
101 re=0.97 ,"
—_ RMSE =0.88 ’
i 84 v=094x Y
ho] SN S
E 6 3
E
S
5 49
z -
o .
w 2] g
O-
0 2 4 6 8 10
101 re=0.98 ,"
RMSE = 1.13 ’
— . s
i 84 v=0488x -'f. ¢
© R L
€ 64 . -
£ nr
p—a 3
= 4 . A
z 4 W
i O
w 21 7
0.
0 2 4 [¢] 8 10
101 re=096 //'
. RMSE = 0.94 p
i 84 y=098x ,’
o .
E 6_ o
E CAYE.
(- . i
= 41 b
a v 08
i L
w 21 7
0.
0 2 4 6 8 10
109 re=097 e
. RMSE = 0.95 ’
- 84 y=085x /’
=] ’
S 4 B
[ .
o
= o] R
w 2 //
O.

0o 2 4 6 & 10

PM ET, {mmd™")

krs from climate-focused eqs.

101

R*=0.97 ‘
RMSE = 0.80 2
y=0.96 x

104

84

R2= 097
RMSE = 0.84
y=0.99x

10

84

R2=095 ,’
RMSE = 1.17 ’

- K4
y=0.88x oy ’,..,

R2=0.96 Py
RMSE = 0.95 P
= 7z,
y=0.95x P

7,
Y
iy e
&
4 A
. 3
AT

1 RrR2=0.97

RMSE = 0.85 ’

4 y=088x s

0 2 4 6 8 10
PMET, (mmd™")

krs from cluster-focused eqs.

10

84

64

R?=098 ’
RMSE =0.84 /4
y=1.04x s

R?=0.96 .
RMSE =1.01 2 .
{ y=0s0x W3 e
..é T - by
B
: ."

1 Rre=007 L7
RMSE =1.33 ’
1 y=1.19x - » /’
. v‘
apvars
k
--'2 g
be
ot
A

O 2 4 6 8 10
PM ET, (mmd™")

Figure 5.5. Comparing ET, pmt with PM-ET, for each cluster and locations when using
Tdew=Tmin, the default un value and the different MLR equations for estimating

kRs .

coefficient R? and the RMSE.

Included are the FTO regression equation, the OLS determination
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As mentioned previously, the cluster-focused optimized MLR equations using numerical
models outperformed the global and climate-focused MLR equations for the set of sites,
whether considering individual sites or clusters (Figure 5.6). Some sites exhibited similar
RMSE values when using the climate-focused MLR and the global equation. However,
the box-and-whiskers plot revealed variations where the metrics overlapped, indicating
that while these standard approaches may be effective for certain sites, they are not
suitable for most of them (Figure 5.6). The metrics indicate that the best adjustments for
estimating ET, using temperature alone were achieved by applying either Tdew=Tmin Or
Tdew = Tmean — ap criterion with optimized ap, uz ¢, and using the cluster-focused MLR
to estimate kgrs for each site or group of sites. The results for Tmin showed a wider spread
of RMSE values (Figure 5.6), possibly because humid and moist sub-humid sites were
considered together. In contrast, for the other two predictors using Tmean, the spread was

smaller, because only humid sites were considered.

200



Windat2ms' Average Wind

20 . ril * ok *
o 1.57
HFCIEPIE T
SR T B
0 + = e —
= 0.51
o

0.0 1

QJ‘\ x@ O Q} x@ O
0 @ e o K
Q\O C)'\\é\ 3\0\) ®O C)-\\& 3\000
\Q‘} \Q"K
& N
e ¢

Figure 5.6. Box-and-whiskers plots of the root mean square errors of ET, estimations
using the PMT approach with different predictors for Tdaew (Tmin (blue), Tmean-
2 (orange), or Tmean—ap with ap optimized (green)), using either the default 2 m
s—1 or the local average wind speed as predictors, and using as the krs predictor
either the global, climate-focused or the cluster-focused equations, for the
various sites in Guinea-Bissau. Means followed by an asterisk (*) are
significantly different (a < 0.05) and those followed by two asterisks (**) are
highly significantly different (o < 0.01) according to the Kruskal-Wallis test.

The results of the current study when using any of the MLR equations were within the
range of those reported for several sites in Africa, such as the study performed by (Djaman
et al., 2016) in Tanzania and Kenya when using the PMT approach with uz ayg and the
default predictors of Tqew and Rs (RMSE ranging 0.64 mm d™! to 1.09 mm d ™). A study
performed in Cote d’Ivoire (Koudahe et al., 2018) reported RMSE ranging from 0.43 mm
d'to 0.89 mm d! when using PMT with the default values for the different predictors
(Allen et al., 1998). A study performed at several sites in Ghana (Landeras et al., 2018),

reported RMSE values ranging from 0.58to 1.11 mm d™! when using PMT, while RMSE
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decreased when using Artificial Neural Networks (ANNs) and Gene Expression
Programming (GEP) to 0.53-0.84 mm d™!' and 0.51-0.79 mm d!, respectively. The study
performed in humid climates of Uganda by (Djaman et al., 2017) tested several
approaches to cope with missing data and reported that the PMT with default values for
the predictors of krs and Tqew and u avg outperformed the other approaches with an RMSE
ranging from 0.69 mm d! to 1.34 mm d™!. Better results were reported in a study applied
to Burkina Faso with an RMSE 0.53 mm d! and a tendency to overestimate ET,
(PBIAS=6%) when the PMT approach was used, optimizing the Rs and Tqew predictors
and using the uzavg value (Yonaba et al., 2023). The globally applied study by (Almorox
et al., 2018) reported a RMSE for several humid locations in Hungary, ranging from 0.63
mm d! for Aw of climates as in GB, when using the default predictors for Tdew and u>
and calibrated or default krs values. In the current study, using the same approach, RMSE
was 0.79 mm d!' and 0.85 mm d™!' for humid and moist sub-humid sites, respectively.
(Trajkovic et al., 2020) for several humid locations in Hungary, reported a wide range of
RMSE from 0.10 mm d! to 0.81 mm d! when using the default krs and Tqew predictors
values with uz avg. Other studies such as those by (Todorovic et al., 2013) and (Raziei &
Pereira, 2013) for sub-humid and humid climates in the Mediterranean basin and in Iran,
respectively, also reported better results when calibrating krs, U2avg, and using the
different Tgew predictors. Furthermore, the results of the current study when using the
LMR equations with the PMT approach are in line with those reported by (Paredes et al.,

2020) for the humid and moist sub-humid climates.

Enhancing the accuracy of ET, estimation can be challenging, particularly when
analyzing sites with high climate variability and limited weather data availability. The
FAO-PMT ET, approach, which uses global and climate-focused MLR equations,

showed good accuracy, particularly when considering each site individually,
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demonstrating that there is no significant advantage in developing cluster-focused MLR
equations or optimizing ap. However, when performing the analysis at the cluster level,
there was a consistent trend toward improved performance with this optimization, despite
the robustness of the approach needing to be further tested using a wider set of weather
data. Overall, due to the simplicity of the approach, the use of the global and/or the
climate-focused LMRs as predictors of kgrs is advocated despite their tendency to
underestimate ET,, in combination with the u2 gefauit When it leads to less underestimation.
Furthermore, these approaches demonstrated their potential as valuable tools for
improving water use efficiency in the absence of accurate data, as they can serve as a
baseline for estimating water and salt balances using different models (Garbanzo,
Céspedes, et al., 2024; Garbanzo, do Rosario Cameira, et al., 2025; Liu, Paredes, et al.,
2022; Ramos et al., 2024). Future applications of the method would benefit from
enhanced ground observation networks, particularly in data-scarce regions like central

and eastern GB, to strengthen calibration and reduce potential uncertainties.

4.4. ET, estimation using different reanalysis datasets
Analysis of wind speed data from AgERAS (uz eras) and MERRA-2 (u2 merra) revealed
significant discrepancies with u» observations (results not shown), as reported in previous
studies assessing reanalysis data (Martins et al., 2017; Paredes, Martins, et al., 2018). This
led to ET, estimation using reanalysis data that excluded this variable. Two approaches
were then used, one replaced uz eras and uz merra With the uz ¢er value, while the other
used the w2 avg value. The results show that the estimation of ET, using raw AgERAS
reanalysis data (ET, gras) exhibited significant variability compared to the ET, values
calculated from ground truth (observed, ET, oss) data (Figure 5.7 and Figure 5.S7),

particularly when the default u, was used in the ET, gras estimations.
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Figure 5.7. Comparison of ET, estimated with ground truth (observed) data and with AgERAS and
MERRA-2 reanalysis datasets when raw (UN.) data were used and after using the diverse bias
correction methods (Sc, RLM, Bias., and ALM.). The local average (u; avg) or the default value
of 2 m s™! (uz der) was used instead of the reanalysis wind speed data. (UN. = uncorrected bias;
bias correction methods: S = slope, RLM, = robust linear model; Bias. = bias correction;
ALM_. = adjusted linear model). Means followed by an asterisk (*) are significantly different
(o < 0.05) and those followed by two or three asterisks (** or ***) are highly significantly
different (o < 0.01) according to the Kruskal-Wallis test, NS = not statistically significant.
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Using raw (uncorrected) reanalysis data with u; avg to estimate ET, showed a wide range
of regression coefficients b (0.90 — 1.18) (Table 5.S6) and PBIAS (-7.72 — 21.14) (Figure
5.7), but most sites did not show an under- or overestimation tendency (bo near 1.0 and
PBIAS near 0%) (Figure 5.S7). When uz ¢er was used, however, the bo and PBIAS values
varied in a wider range, with two groups of sites, one with an under-estimation tendency
(b0<0.90, PBIAS), and the other with an over-estimation tendency (bo>1.10, PBIAS). In
both approaches, R? was generally above 0.95, showing that ET, gras was able to explain
most of the ET, os variance. When analyzing the errors due to using uz avg, the RMSE
ranged from 0.84 to 1.48 mm d!. This value decreased slightly when uz ¢er was used
instead (RMSE from 0.80 to 1.46 mm d™!), corresponding to NRMSE ranging from 17.9%

to 31.9% and 17.9% to 31.8%, respectively.

After applying different bias correction methods to the ET, eras data, the results showed
a general decrease in the RMSE values and as expected, in PBIAS and BIAS (Figure 5.7)
and as well as in by (Table 5.S6). The analysis of the BIAS and PBIAS metrics revealed
that BIAS. and ALM. effectively removed the under- and over-estimation of the ET, gras
data. However, the ALM_ ability to explain the variability in the data was lower than that
of the other bias correction methods, suggesting lower predictive performance. This is
evident in the decrease in R? from 0.96 to 0.90 and 0.92 when using U2 ave OF U2 def,
respectively (Table 5.S6). Although ALM. removed the bias of the reanalysis data, it

failed to reduce the estimation errors.

Analyzing the set of goodness-of-fit indicators (Figure 5.7 and Table 5.56), it was found
that the different bias correction methods exhibited further differences in accuracy, with
the simple BIAS: method performing the best. The average RMSE values were very
similar for BIAS, (1.05 mm d™! or 0.99 mm d™! when using uz ave and uz gef, respectively),

RLM. (1.04 mm d™! or 0.97 mm d™'), and Sc (1.04 mm d™' or 0.98 mm d™'). This small
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difference in NRMSE indicated that these bias correction methods were not significantly
different (a0 <0.05). Similarly, the mean NRMSE values were 22.0%, 21.7%, and 21.7%
respectively (Table 5.S6). For ALMc, the bias correction was successfully applied;
however, the RMSE was higher (> 1.3 mm d!) than that of the other correction methods
in both AgERAS and MERRA-2, indicating lower accuracy. Using the uz der value
resulted in slightly higher accuracy for all bias correction methods, but this was not
statistically significant (NS). Overall, the BIAS.: was the simplest and most effective,
leading to significant differences (o = 0.05) compared to using raw data. This makes it a
practical option for calculating ET, using AGERAS and MERRA-2 data with either u avg

Or U2 def.

Using raw MERRA-2 data to estimate ET, (ET, merra) produced greater variability and
a marked under-estimation (Figure 5.7) and less precision (Table 5.S6). Comparing the
two data sets (Figure 5.7), the superiority of using raw AgERAS becomes evident, i.e.,
the results indicate that MERRA-2 underperforms compared to AGERAS . Similar results
were reported by (Soulis et al., 2025) for the estimation of annual ET, in Greece. The
differences in performance between the reanalysis datasets may be due to the coarser
resolution of the MERRA-2 dataset, which makes it difficult to adequately capture
climate variability within GB. When u2 avg and uz ¢er were used, the latter performed

slightly better but did not reach statistical significance.

The results show that, for operational use, the ET, merra needs to be bias-corrected (see
Figure 5.7). As with ET, eras, the results also highlight that ALM. and BIAS. were the
only methods that effectively removed the bias. The RMSE was 1.57 mm d! when raw
data were used, and it decreased to 1.38 mm d' with the ALMc method and to 1.01 mm
d™' with the BIASc method. As with the AgERAS data, ALMCc's ability to explain the

variability in the data was lower than that of the other bias correction methods, showing
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a smaller reduction in RMSE (see Table 5.S6). BIAS. was the best bias correction

method, as it improved all accuracy indicators.

The results of the current study using raw reanalysis data are comparable to those reported
in the literature. Tiruye et al., (2024) reported a tendency for overestimation when using
ERAS5-Land for the Tana Basin in Ethiopia, which has a subtropical climate, with RMSE
ranging from 0.54 mm d! to 1.82 mm d™'. Lopez-Guerrero et al., (2023) reported RMSE
ranging from 0.49 mm d! to 0.88 mm d! for Egypt, Morocco, and Tunisia. Nouri &
Homaee, (2022) reported an NRMSE ranging from 11% to 20% for ET, estimates on a
monthly timescale for the humid sites of Iran. Various studies have been carried out for
Italy and Portugal. For example, (Vanella et al., 2022) reported an NRMSE ranging from
15% to 47% when using two ERAS products, depending on the time scale. Other studies
carried out in Italy using ERAS5-Land datasets reported a tendency towards
underestimation and generally lower RMSE; for instance, Pelosi et al., (2020) reported
an RMSE ranging from 0.44 to 1.04 mm d"!, with NRMSE values lower than 14%, and
(Ippolito et al., 2024) reported RMSE ranging from 0.42 to 1.26 mm d!. Paredes, Martins,
et al., (2018) reported better results using ERA-Interim for mainland Portugal, with RMSE
> (.75 mm d! for most sites, combined with a tendency of underestimation. After simple
bias correction the RMSE decreased to a range of 0.50-0.75 mm d! for most sites

(Paredes, Martins, et al., 2018).

There are few studies in the literature that have used MERRA-2 to estimate ET,. The
results of the current study are comparable with those reported by (Nouri & Homaee,

2022), with lower NRMSE values ranging from 10 to 20% at humid sites in Iran.

Overall, the results of the analysis of the gridded datasets emphasize the need for bias

correction to enhance the accuracy of ET, estimates derived from reanalysis products in
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data-scarce regions. Furthermore, a comparison of the results from AgERAS5 and
MERRA-2 (Figure 5.7, Table 5.S6) with the FAO-PMT approach (section 3.2, Table 5.5)
shows that the latter performs better and therefore can be used to estimate ET, when

temperature data is available.

The results of the current study suggest that AGERAS data could be used with caution for
estimating ET,, particularly when the observed weather data are unavailable. Further
caution is needed, particularly for studying climate variability and change, as previously
reported (Mendes et al., 2025; Mendes & Fragoso, 2023, 2024). To allow for a more
thorough evaluation of the accuracy of the gridded dataset, it is advisable to continue
collecting meteorological data over a longer period and between regions. The method can
be adapted to other regions, but local ground data are key to improving accuracy. Further
long-term studies are encouraged, particularly in areas with limited station coverage,

where expanding or recovering weather observations could reduce uncertainties.

4.5. ET, mapping
Figure 5.8 shows the spatial variability of the mean annual ET, eras in the country after
applying the best bias correction method (BIAS.). The results show that the spatial
distribution of the annual ET, presents strong spatial coherence and continuity (Table
5.S8). The fitted exponential variogram with a nugget of 10 mm, sill of 17.8 km, and an
extensive range of 240.3 km indicates a well-structured spatial dependence on the
regional scale. Autocorrelation results support this, with a Global Moran’s I of 0.84, a Z-
score of 20.71, and p < 0.001, confirming significant spatial clustering of ET, values. The
model achieved excellent annual accuracy, with errors less than 2.5% of the observed
NRMSE mean and minimal bias (BIAS = 0.14, negligible PBIAS). These values indicate

both high precision and negligible systematic errors in the estimation. The high R? (0.87)
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and Spearman correlation (p = 0.94) further validate the model's reliability across spatial

domains.

16°|0’W 14°|0’W

% Senegal

Biombo
Bissau®

ErRQlinara)

o og . &
O . @ Guinea
BoIamalBija/g;g}ﬁ}Q el

’q

A Weather sensors

Atlantic Ocean ETo (mm)

0 25 50 km / F 2000

L — / 1578
T T

16°0'W 14°0'W

Figure 5.8. Spatial distribution of annual ET, estimated using bias corrected AgERAS

data, in Guinea-Bissau.

In practice, the ET, map is consistent with the observed patterns in the country, where
southern areas have higher temperature and ET,, while some inland locations have lower
ET, values. This reflects the typical variability observed in tropical regions, where
climatic and topographic conditions contribute to significant spatial differences in ET,.
The results of this study highlight the value of gridded climate datasets such as AgGERAS,
after appropriate bias correction, for regional scale agroclimatic applications. For regions
of the Guinea-Bissau where ground-based meteorological data are sparse, corrected
satellite-derived ET, maps can provide important support for water management
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planning, drought monitoring and sustainable agricultural management. However, it is
advisable to collect more observational data to further support the findings of the current

study.

5. Conclusions
The approach developed in this study is an important tool for Guinea-Bissau (GB), where
limited government investment in sensors hinders the rapid acquisition of accurate
meteorological data. The findings of the present study underscore that the PMT approach
yielded more accurate ET, estimates than either of the reanalysis products, even after its
bias correction. However, in the absence of observed temperature data, AgERAS data
could be used as an alternative source, although caution is advised due to known biases
and uncertainties associated with ET, estimation from this reanalysis product. When
using the PMT approach it can be concluded that Thin 1s an adequate predictor of Tgew in
both moist sub-humid and humid climates. Therefore, there is no need to use corrected
Tmean to predict Taew, as this does not significantly affect ET, estimates. Furthermore, the
u default value of 2 m s™' was found to be the best predictor when coupled with either
the global or the climate-focused equations for estimating ET,. The newly proposed
cluster-focused equations improve the accuracy of ET, compared to the global or climate-
focused equations but require further validation for GB. More broadly, this study
demonstrates the suitability of the user-friendly approaches outlined in FAOS56rev,

particularly in regions where access to comprehensive weather information is limited.

The study provides a robust framework for enhancing agricultural practices and fostering
resilience in areas grappling with climatic and environmental challenges. In the case of
GB specifically, the approximate datasets and tools provided by the developed

approaches could greatly benefit organizations working to improve the country's social
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and food security, such as international cooperation projects and GB's development

ministries.

However, the approach explored in this study could be further enhanced by expanding
the ground-truth database to include more years of observations. It is important to test the
global and climate-focused equations with more data from tropical countries, especially
those with high rainfall and climate variability. This is particularly relevant for regions
between 0° and 20° N latitude, which experience the greatest climate variability and have
not been the focus of previous studies. Overall, it is essential to refine the tools further to
improve the estimation of ET, in regions where investment in specialized equipment is
low. Nevertheless, this work provides a foundation for calculating water and salt balances
in MSR production in Guinea-Bissau and other West African countries where this system

exists.
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6. Supplementary material

6.1. Supplementary S1. Numerical method for deriving the cluster-focused multiple linear
regression (MLR) equations to estimate kg (Eq. 4)

The goal is to minimize an objective function f(kgs) subject to box constraints using the “L-
BFGS-B” method (Byrd et al., 1995). The objective function f (kgs) is the RMSE calculated as a
function of the parameter kgs.

Ming,sRMSE (kgs) = f (kgs)

Eq. Al
Where:
RMSE = root mean square error.
K, = radiation adjustment coefficient.
Objective function
: 1
f (Krs) = ming gs<krss<o.2s = ;Z, 1(ET0L' — ET, pur i)?
=
Eq. A2

Where:

min g os<krs<o25 — Lhe minimization is subject to box constraints using the “L-BFGS-B”
Algorithm.
ETo; = Evapotranspiration calculated with all weather variables for observation i..
ET, pyr i = Evapotranspiration calculated using temperature difference with kg, for observation
L.
The “L-BFGS-B” Algorithm.
This aims to solve.
min ¢ f (@)
Eq. A3
Subject to
0, <0<0y
Eq A4.
Where:
f (@) = is the objective function to be minimized (RMSE (kgs)).
@ = is the vector of parameters (k).
@; and @ are the lower and upper bunds of the parameters, respectively.
Algorithm steps:
1) Initialize: start with an initial guess @, within bounds (0.17 as it is the default kg, value).
2) Compute gradient: calculate Vf (D).
3) Search direction: determine P, using limited-memory approximation of the inverse Hessian.
4) Line search and update: Find and appropriate step size ;, and update @y .
5) Projection: Ensure the updated parameters @, stay withing bounds by projecting onto the
feasible region.
Brs1 = Proj (B —o¢, HiVf (@)
Eq AS.
Where:
H,, = is the approximation of the inverse Hessian matrix.
&, = is the step size determined by line search.
Proj = denotes the projection operator ensuring @, remains
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6.2. Supplementary B. Climate characterization and data QAQC.

Table 5.S2. Aridity index for GB calculated with data from FAO CLIMWAT 2.0 weather

data.
CLIMWAT
Nearest
Region Weather ET, Rainfall Al Classification
stations
station
- - mm mm Index - -
Buba 1539.4 2133 1.39 Cafine
South Catio 1641.3 2629 1.60 Humid Quebil
Bolama 1691.9 2076 1.23 Buba
Malafu
Central Bissau 1584.8 1650 1.04 Humid Enchugal
Bubaque
Bissora
o . S. Domingos
Zinguincor Moist, sub-
North 1777.6 1235.1 0.69 ) Cacheu
(Senegal) humid
Elalab
Djobel
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6.3. Supplementary C. Goodness of fit indicators and standard deviation for
predicting ET, in sites.

Table 5.S3 presents the goodness-of-fit indicators and standard deviations of the data used
to calibrate the multiple linear regression equations, which were optimized using the L-
BFGS-B numerical method. The table includes metrics for predictions made in both the
moist sub-humid and humid regions, as well as for scenarios where estimators such as
Tdewand wind speed (u2) were unavailable, using either average (uz avg) values or a default
(12 ¢ef) of 2 m s The equations were calibrated using 70% of the dataset from each
meteorological station, and the remaining 30% was used to validate the calibrated
equations. Subsequently, the validated equations were applied to 100% of the dataset for
the development of this study.

Table 5.S3. Goodness-of-fit indicators and the standard deviation of ET, estimation when
using the PMT approach relative to the test and validation of the cluster-
focused multiple linear regression equations for estimating the radiation
coefficient (krs) (Eqs. 12-16) and using different predictors for dew point

temperature (T4ew) and wind speed (uz).

Predictors Goodness of fit indicators and standard deviation
RMSE NRMSE PBIAS
Climate u; by SD R? SD SD SD BIAS SD SD
Taew ks (mm d) (%) (%)
Testing (70% data set)
Moist sub T o Default | 0.98 | 0.01 | 0.97 | 0.01 0.92 [0.134 19.1 3.06 | 0.00 |0.04 -0.04 |0.85
min tm
humid P Avg |[0.98 |0.01 |098 |0.01 0.77 [0.174 16.0 3.11 | 0.00 |0.04 -0.04 (0.79
T o Default | 0.98 | 0.00 | 0.97 | 0.00 0.78 ]0.053 16.7 1.16 | -0.01 |0.02 -0.17 (044
min ptm
Avg |[098 |0.01 |0.98 |0.00 0.67 [0.061 14.3 1.50 | -0.02 | 0.06 -0.56 |1.33
Default | 0.97 | 0.02 | 0.98 | 0.00 0.70 [0.043 14.9 1.25 | -0.05 |0.07 -1.17  |1.53
Humid |Tpen-2 | Optm
Avg |[0.97 |0.02 | 098 |0.00 0.68 [0.051 144 1.41 | -0.05 | 0.07 -1.16  [1.51
T mean-aD o Default | 0.98 | 0.01 | 0.98 | 0.00 0.67 ]0.045 14.3 1.19 | 0.00 |0.01 0.09 |0.30
ptm
(ap opt) Avg [0.99 |0.03 |0.98 |0.00 0.67 [0.049 14.3 1.31 0.04 |0.11 0.86 |2.20
Validation (30% data set)
Moist sub T o Default | 0.98 [0.006 | 0.97 | 0.01 0.85 [0.117 17.8 244 | -0.01 |0.03 -0.11  [0.62
min ptm
humid Avg |0.98 |0.014 | 0.98 | 0.01 0.72  [0.131 15.1 240 | -0.01 |0.05 -0.33  [1.10
o Default | 0.99 [0.005 | 0.97 | 0.00 0.79 [0.057 16.7 1.17 | -0.01 |0.02 -0.17 (044
Tmin ptm
Avg |[0.98 (0.018 | 0.98 | 0.00 0.67 [0.068 14.3 1.50 | -0.03 | 0.06 -0.56 |1.33
Default | 0.98 [0.006 | 0.98 | 0.00 0.67 ]0.045 14.3 1.19 | 0.00 |0.01 0.09 |0.30
Humid Tmean-2 Optm
Avg |[0.99 (0.026 | 0.98 | 0.00 0.67 [0.049 14.3 1.31 0.04 |0.11 0.86 |2.20
T mean-ap o Default | 0.99 [0.005 | 0.97 | 0.00 0.79 [0.057 16.7 1.17 | -0.01 | 0.02 -0.17 044
ptm
(ap opt) Avg |[0.98 [0.018 | 0.98 | 0.00 0.67 [0.068 14.3 1.50 | -0.03 | 0.06 -0.56 [1.33
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Table 5.S4. Ranges of the goodness-of-fit indicators relative to comparing PM-ET, with

ETo pmr when using Tmin or the Tmean as predictor of Tdew, When krs was

computed with the global Eq. (6), with the climate-focused Eqs (7a, 7b), or the

cluster-focused Egs. (12-16) when using the default or the average local u»

value, for the eleven sites of Guinea-Bissau.

Climate Predictors Goodness of fit indicators (ranges)
Tdew Krs u b R RMSE NRMSE BIAS PBIAS
(mm d) (%) (%)
Tmin Global [Default |0.86-0.98| 0.95-0.98 | 0.86-1.19| 18.0-23.8 -0.7--0.03 -13.0--0.8
-é Avg 0.76-0.87| 0.95-0.98 | 0.99-1.26 | 19.6-27.5 -1.0-0.6 -22.7--11.7
i Climate Default |0.83-0.95| 0.95-0.98 | 0.89-1.22| 18.6-24.5 -0.8--0.15 -15.9--3.35
:% Avg 0.73-0.85| 0.95-0.98 | 1.09-1.37 | 21.7-30.0 -1.2-0.7 -25.6--13.7
é Cluster Default |0.96-1.19| 0.95-0.98 | 0.77-1.33 | 14.7-29.0 -0.07-0.93 -1.32-20.24
Avg 0.92-1.04| 0.96-0.98 | 0.67-1.08 | 14.6-21.6 -0.30-0.25 -6.62-5.15
Tmin Global |Default |0.85-1.00| 0.97-0.98 | 0.80-0.94| 16.8-21.5 -0.58-0.04 -13.3-1.2
Avg 0.76-0.88 | 0.95-0.98 | 0.79-1.28 | 17.3-27.3 -0.9-0.1 -18.9-1.5
Climate Default |0.88-1.12| 0.97-0.98 | 0.78-1.04 | 16.3-22.2 -0.41-0.57 -9.4-12.5
Avg 0.80-1.01| 0.95-0.98 | 0.63-1.09 | 13.8-23.3 -1.1--0.6 -23.5-11.0
Cluster Default |0.98-1.14| 0.97-0.98 | 0.74-1.09 | 15.7-23.8 0.06-0.68 1.5-15.1
Avg 0.95-1.03 | 0.97-0.98 | 0.61-0.77 | 12.8-16.8 -0.18-0.20 -3.93-4.3
Tmean- 2| Global [Default |0.77-0.88| 0.97-0.98 | 0.81-1.30 | 17.7-26.9 -1.05--0.5 | -22.5--10.8
Avg 0.72-0.86| 0.95-0.98 | 0.87-1.44| 18.9-30.8 -1.3--0.6 | -27.5--13.3
= Climate Default |0.81-1.01| 0.97-0.98 | 0.69-1.11 | 15.1-23.0 -0.8-0.08 -17.7-1.9
E Avg 0.77-1.00| 0.95-0.98 | 0.65-1.22 | 14.3-26.1 -1.0-0.0 -22.3-0.6
Cluster Default |0.92-1.03| 0.97-0.98 | 0.66-0.79 | 13.7-16.9 -0.30-0.22 -5.8-4.7
Avg 0.92-1.03| 0.97-0.98 | 0.62-0.79 | 13.0-17.0 -0.2-0.17 -6.4-3.64
Tmean-ap| Global [Default |0.87-0.99| 0.97-0.98 | 0.63-0.92 | 13.7-18.4 -0.5-0.02 -10.6-0.49
(ap opt) Avg 0.75-0.89| 0.95-0.98 | 0.77-1.29 | 16.7-24.0 -0.9-0.1 -19.2-2.5
Climate [Default |0.92-1.00| 0.97-0.98 | 0.63-0.80 | 13.2-17.2 -0.3-0.04 -6.0-0.96
Avg 0.80-1.01| 0.95-0.98 | 0.63-1.10| 13.8-23.8 -1.1--0.5 -24.0--104
Cluster Default |0.97-1.00| 0.97-0.98 | 0.66-0.73 | 13.7-16.6 -0.01-0.05 -0.01-1.08
Avg 0.96-1.04| 0.97-0.98 | 0.61-0.74 | 12.7-16.8 -0.16-0.09 -3.3-5.28

Default —u; =2 m s~' SD= standard deviation; R? = coefficient of determination; RMSE = root mean square

error; NRMSE = normalized root mean square error.
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Table S5. Accuracy of different PMT approaches analysed at cluster level. ET, pmt estimated when using Tmin Or the Tmean as
predictor of Teew, ther krs were computed with the global Eq. (6). or with the climate-focused Eqs (7a, 7b), or the cluster-
focused Egs. (12-16) when using the default or the average local u, value for the eleven sites of Guinea-Bissau.

Cluster Predictors Goodness of fit indicators and standard deviation
, | RMSE | NRMSE PBIAS
(AI) Tdew KRrs uw bo R (mm d)| (%) BIAS (%)
Global |Deft 092 0.97 | 0.86 1791 | -0.35 | -7.2
Avg|  0.86 0.98 | 0.97 | 20.02 | -0.63 | -13.1
Tos Climate | Def|__0.96 0.97 | 0.80 16.64 | -0.14 | 3.0
min Avg| _ 0.90 098 | 0.84 1732 | -0.42 | -8.7
Ootim | Dl L04 0.98 | 0.84 1741 | 027 | 5.6
= p Avg| 0.9 098 | 0.72 1487 | 0.0l | 0.3
g Global |Def| 080 0.98 1.14 | 23.63 | -0.88 | -183
E Avg|  0.79 0.98 1.19 | 2458 | -0.95 | -19.6
= Tow -2 | Climate Dt 0.85 098 | 0.97 | 20.08 | -0.66 | -13.62
- mean Avg|  0.84 0.98 1.00 | 2071 | -0.71 | -14.7
] Ootim | Deft|__0.94 098 | 0.73 1521 | -0.20 | -4.2
E P Avg| 094 098 | 0.73 15.18 | -0.23 | -4.8
o Global 1Deft| 091 0.98 | 0.80 1655 | 035 | 74
Avg|  0.85 098 | 0.95 19.59 | -0.62 | -12.9
Twewn-ad | Crimate |DSft_ 095 098 | 0.72 1490 [-0.15 [ 30 | ¢
(aroptim) Avg|  0.78 0.98 1.23 25.53 | -0.98 | 204 | £
Ootim Dt 0.99 0.98 | 0.70 1449 | 002 | 05 | §
p Avg| 0.9 0.98 | 0.68 1418 | 0.02 [ 05 | 2
Global 1Deft| 094 0.97 | 0.88 1841 | -023 | 49 | .
Avg|  0.80 0.98 1.12 | 2347 | -0.89 | -18.6 | m
Tos Climate |Deft__ 099 0.97 | 0.84 17.78 | 0.01 | 0.12 8
- min Avg|  0.85 0.98 | 0.93 1961 | 067 | -14.1 | 2
2 Ootim [ Deft 112 0.97 1.06 | 2222 | 061 | 129 | &
g p Avg| 0.9 0.98 | 0.65 1373 [ 0.03 [ 06 | -
i Global 1Deft| 079 0.98 1.17 | 2457 | 094 [ -19.7 | %,
E T (moist) Avg|  0.76 0.98 130 | 2726 | -1.11| 234 | <
E o O ate |Deft] 085 0.98 | 0.95 20.04 | -0.65 | -138 | =
= (humid) Avg|  0.82 0.98 L04 [ 21.99 [-082[ 1737 2
2, Outim [ Deft__0.99 0.98 | 0.71 1495 [003 [ 05 | 8
5 P Avg|  0.97 098 | 0.67 1411 _[-007 | -15 | &
Z Global 1Deft| 090 0.98 | 0.79 1658 [-039 | 83 | =
o o (moist) Avg|  0.79 0.98 1.13 2375 | 092 | -193 | &
& | Climate DSt 0.86 0.96 1.07 | 2230 | -0.52 | -10.8 'é
(humid) Avg|  0.80 0.96 127 | 2635 | -0.87 | -18.1 | £
Ootim | Deft| .00 0.98 | 0.71 1494 [ 004 [ 09 | &
P Avg|  1.00 0.98 | 0.64 1356 | 005 | 1.0 | =
- Global |Deft| 0.8 0.96 1.13 2229 | 053 | -105 | .8
E Avg|  0.86 0.96 1.15 2265 [ -0.60 | -11.8 |
52 Tos Climate | Def|__0.88 0.95 117 | 2340 | 051 -103 | 3
Z g min Avg|  0.84 0.96 122 | 2446 | 070 | -141 | o
5~ Ootim | Dt 0.99 0.96 1.01 1991 | 005 10 | &
P Avg|  0.98 0.96 | 0.9 19.49 | -001 | -02 | &
Global 1Deft| 098 0.96 | 0.94 | 2042 [-0.04] 08|
o Avg|  0.76 0.98 126 | 2747 | -1.04 | 227 | A
52 Tos Climate | Def| 095 0.96 | 0.95 2071 | -0.15| 34 | @
2z min Avg|  0.73 0.98 137 | 2997 | -1.17 [ 256 | =
A= Outi Def[ 1.19 0.97 1.33 2899 | 0.93 | 202 | E
PUM  [Ave|  0.99 098 | 0.67 | 1467 | 0.02 | 04 |
Global 1Dt 0.85 0.97 | 0.95 2150 [-058 [ -1337] o
Avg]  0.79 0.97 111 2529 | -0.82 | -187 | 7}
T Climate | Def|__0.88 0.97 | 0.85 1928 | -0.41 | 94 | %
min Avgl  0.83 0.97 | 0.98 2222 | -0.64 | -145 | A
Ootim _|Det|__0.99 0.97 | 0.74 1679 | 0.07 | 15
= P Avgl  0.95 0.97 | 0.74 16.79 | -0.12 | 2.6
T Global | Def[_0.79 0.97 1.13 25.56_| -0.83 | -18.9
5 Avg|  0.78 0.97 1.17 | 2654 | -0.89 | -20.2
< Too -2 | Climate |Deft| 083 0.97 | 0.99 | 2258 | -0.66 | -14.9
s mean Avg|  0.82 0.97 1.02 | 2322 [-0.70 | -15.8
g Outi Deft|  0.94 097 | 0.75 1698 | -0.16 | 3.6
< pum - PAvel 0.94 097 | 0.75 17.03 | -0.15 | -3.5
= Global _1Deft| 090 0.97 | 0.8l 1845 | 029 | -6.6
Avg| 081 0.97 1.06 | 23.98 | -0.73 | -16.6
Twen-ad | cimate DS 0.94 0.97 | 0.76 1727 | -0.13 | 2.9
(ap optim) Avg| 085 0.97 | 093 2121 | -0.55 | -12.5
Ootim Dt 0.97 097 | 0.73 16.60 | 0.00 [ 0.0
P Avg|  0.96 0.97 | 0.74 16.81 | -0.05 | -1.1
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6.4.Supplementary D. Correlation between ET, estimated with weather
observations and with AgeERAS and MERRA-2 reanalysis data.

Table 5.S6. Goodness-of-fit indicators relative to the estimation of ET, when using

AgERAS5 and MERRA-2 reanalysis data compared to observed ground

measurements.
PBias RMSE NRMSE
Bias correction (%) Sp Bias Sp R? SP (mm d) SP (%) SP
methods AgERAS
U2 avg
UNc 5.17 7.22 0.2 0.34 0.96 0.01 1.12 0.17 23.6 3.9
ALMc 0.00 0.00 0.0 0.00 0.90 0.03 1.63 0.27 34.0 5.7
BIAS. 0.00 0.00 0.0 0.00 0.95 0.01 1.05 0.11 22.0 23
RLM. 241 0.82 0.1 0.04 0.96 0.01 1.04 0.09 21.7 1.6
Se 2.59 0.88 0.1 0.05 0.96 0.01 1.04 0.09 21.7 1.7
u=2ms’
UNc 4.54 7.98 0.2 0.37 0.96 0.01 1.07 0.17 224 3.9
ALMc 0.00 0.00 0.0 0.00 0.92 0.02 1.48 0.20 31.0 43
BIAS: 0.00 0.00 0.0 0.00 0.96 0.01 0.99 0.10 20.7 2.0
RLMc 2.39 0.78 0.1 0.04 0.96 0.01 0.97 0.08 20.3 1.4
Se 2.66 0.81 0.1 0.04 0.96 0.01 0.98 0.09 20.4 1.5
MERRA-2
U2 avg
UNc -24.27 6.88 -1.18 0.39 0.94 0.00 1.57 0.33 32.51 5.44
ALMc 0.00 0.00 0.00 0.00 0.93 0.02 1.38 0.22 28.71 3.94
BIAS: 0.00 0.00 0.00 0.00 0.96 0.00 1.01 0.06 21.11 0.86
RLM. 0.01 1.37 0.00 0.07 0.94 0.00 1.21 0.06 25.14 0.97
Se 0.79 1.09 0.04 0.06 0.94 0.00 1.21 0.05 25.32 0.95
u=2ms’
UNc -18.63 9.61 -0.91 0.51 0.94 0.01 1.44 0.35 29.88 5.95
ALM. 0.00 0.00 0.00 0.00 0.93 0.01 1.39 0.15 28.93 2.39
BIAS. 0.00 0.00 0.00 0.00 0.96 0.01 1.05 0.06 21.95 1.54
RLMc -0.30 1.26 -0.01 0.06 0.94 0.01 1.18 0.05 24.67 1.11
Se 0.93 0.78 0.05 0.04 0.94 0.01 1.20 0.05 24.94 1.17

SD= standard deviation; UN¢ — raw data or uncorrected bias; bias correction methods: Sc- Slope, RLMc — Robust linear

model; Bias. - Bias; ALM¢ — Adjusted linear model
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Figure 5.S7. Comparing ET, estimated with observed weather data and with AgERAS

after bias correction for the eleven sites in Guinea-Bissau.
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6.5.Supplementary E. Spatial distribution of annual ET, in GB.

Table 5.S8. Geostatistical parameters used to calculate the interpolation annual ET, with

AgERAS in GB.
Metric Annual ET, Units
GS+ metrics

Variogram Model Exponential -
Nugget 10 mm y!

Sill 17870 m

Range 240300 m

Autocorrelation metrics
Global Moran's I 0.84 index
Variance 0.001677 mm y!
Z - score 20.714055 mm y!
p-value* <000.1 index
Goodness-of-fit indicators

RMSE 40.5 mm y’!

NRMSE 23 %

BIAS 0.14 -

PBIAS 0.008 %

R? 0.87 -

p 0.94 -

p = Pearson correlation
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Chapter 6

Modeling soil water and salinity dynamics in
mangrove swamp rice production system of Guinea
Bissau, West Africa

This chapter was published in Agricultural Water Management.

Garbanzo, G., Cameira, M. do R., Paredes, P., Temudo, M., Ramos T. 2025. Modeling
soil water and salinity dynamics in mangrove swamp rice production system
of Guinea Bissau, West Africa. Agricultural Water Management, 313,
109494. https://doi.org/10.1016/j.agwat.2025.109494

Keywords:

HYDRUS-1D, Optimal Growing Period, Rainfall Variability,
Groundwater Depth, Salinity Stress, Salt-free period.
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1. Abstract

Mangrove swamp rice production (MSRP) is of fundamental importance for the
livelihoods, food security, and nutritional well-being of coastal populations in West
Africa. However, this system faces increasing challenges due to its reliance on sufficient
and well-distributed rainfall to maintain feasible soil salinity levels for rice production
during the growing season. This study examines the dynamics of soil water and salts using
field observations collected from four different MSRP fields in Guinea-Bissau during two
growing seasons, along with simulations using the HYDRUS-1D model. Several rainfall
and groundwater depth scenarios were also considered to identify the key factors
contributing to soil salinity at the study sites. The results helped identify the main factors
influencing soil salinity during the study period and estimate the potential impacts on crop
yields, which could decline by up to 60%. Key factors influencing soil salinity included
the amount and distribution of seasonal rainfall, groundwater depth, and groundwater
quality. The analysis of modeled scenarios also provided insights into effective
management strategies for coping with soil salinization, particularly by assessing: a)
where and when more productive, long-cycle rice varieties can still be cultivated; b)
where salt-tolerant rice varieties have to be chosen. Additionally, the results reinforce the
need for the regular maintenance of dikes and other drainage structures to avoid brackish
water entrance and guaranty minimum rice growth conditions. Future research will
explore adopting this practice in field with modern water management, with the model

enabling precise analysis of impact on sustainability.
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2. Introduction

Mangrove swamp rice production (MSRP) refers to rice cultivation on former mangrove
soils that have been anthropogenically modified for agricultural use. This practice
typically occurs near saltwater rivers in areas previously covered by mangrove forests,
which have been transformed into rice paddies through deforestation, dike and bunds
construction, plots creation, and soil desalination (Baggie et al., 2018; Balasubramanian
et al., 2007; Garbanzo et al., 2024a). In West Africa, the MSRP region extends from
Senegal to Sierra Leone and plays a vital role in ensuring food security. In Guinea-Bissau,
MSRP areas represent approximately 49% of the country's crop production (The Republic

of Guinea-Bissau, 2018), forming the basis of the population’s diet.

While the MSRP system is not particularly conservation-friendly for mangrove forests, it
remains the only viable option for local communities in these African regions to sustain
food production, given the higher fertility of mangrove soils compared to upland areas
(Jnr, 2014). However, MSRP faces significant challenges, primarily due to its reliance on
rainfall (2,500-1,500 mm) to leach salt from the rootzone, ensuring suitable conditions
for rice growth. As variability in rainfall patterns driven by climate change makes the
desalination of paddy fields increasingly difficult, rice production is negatively impacted
(Mendes and Fragoso, 2023; Temudo et al., 2022). Irrigation is not feasible because
freshwater resources are either unavailable or farmers lack the financial means to access
necessary technologies (Martiarena and Temudo, 2023; Temudo and Cabral, 2023).
Additionally, paddy fields are influenced by tidal movements that affect groundwater
dynamics, saline water intrusion, and soil salinity buildup as salts are drawn up to the soil
surface layer due to strong evaporation rates during the dry season (Garbanzo et al.,

2024a). These challenges characterize MSRP as a highly complex system, and
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understanding its dynamics is crucial for ensuring the sustainability of this production

system.

Although soil salinization in MSRP areas exhibits significant spatial variability (Sylla et
al., 1995), the landscape can be categorized into two distinct zones: tidal mangrove fields
(TM) and associated mangrove fields (AM) (Baggie et al., 2018; Garbanzo et al., 2024a).
TM are the ones closer to the main dike, were previously covered by mangroves forest,
and tend to experience higher levels of salinization. In contrast, AM are situated further
inland, in areas that were once mangrove-covered and have been cultivated for decades
or even centuries or are located near the first main dike prior to agricultural expansion
driven by population growth; they have lower salinization levels primarily influenced by
brackish groundwater during the dry season. Soil salinization management in MSRP areas
remains largely empirical, based on local knowledge and practices, many of which are
not well-suited to the changing socio-environmental conditions (Martiarena and Temudo,

2023).

MSRP in Guinea-Bissau is also not supported with fertilizers input. As a result, and given
that rice is sensitive to salinity stress (Ayers and Westcot, 1985; Minhas et al., 2020),
yields are generally low. According to the USDA (2024), average yields in Guinea-Bissau
(2019-2024) were only about 1.7 tonnes ha™!, compared to 3.6 tonnes ha™! in neighboring
Senegal. For traditional rice-producing countries like India (4.2 tonnes ha''), Bangladesh
(4.6 tonnes ha™!), Vietnam (6.0 tonnes ha™'), Spain (6.5 tonnes ha™!), and China (7.1 tonnes
ha'!), the differences are even more pronounced (FAO, 2023). Nonetheless, the yields
from MSRP are much higher than those obtained through other rice cropping systems
practiced in the country: upland slash-and-burn and freshwater inland swamp cultivation
(Garbanzo et al., 2024a). Traditionally, in this low-external inputs system, soil fertility

and the control of toxicity, particularly during dry season when aerobic conditions prevail,
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were achieved through the regular entrance of brackish water. This practice also improved
weeds’ control and reduced the labor input by eliminating the need for ploughing, which
is a great advantage in times of increased youth migration and engagement in education
(Cossa, 2023). Although this practice has been almost abandoned due to increasingly
irregular rainfall patterns, some development projects have reintroduced it through the
installation of modern water management infrastructures using PVC drainage tubes (see
https://universsel.org/). With an improved understanding of soil water-salt dynamics,
these innovations may facilitate the reimplementation of traditional brackish water

management practices.

Therefore, more effective soil, water, and crop management practices are crucial for
improving both the rice yields and the livelihoods of local communities in a context of
drastic socio-environmental transformations. Numerical Modeling, using tools such as
the HYDRUS software package (Simﬁnek etal., 2024,2016), SWAP (Heinen et al., 2024,
2020), RZWQM (Ma et al., 2001), SALTMED (Ragab, 2002), and WAVES (Yu et al.,
2021), can offer a better understanding of soil water-salt dynamics in complex systems
and valuable solutions for coping with soil salinity. These modeling tools can incorporate
site-specific soil, water, and crop parameters, while accounting for time-varying field
conditions, including soil salinity levels, groundwater dynamics, and rainfall patterns. By
doing so, they can provide insights on the impacts of these factors on crop yields, with
minimal effort and resources, aiding in the development of improved management

guidelines for rice production in salt-affected areas.

Examples of applications of numerical modeling tools for saline water management have
been extensively reported in the literature, including studies on interactions with shallow
saline groundwater systems (Karimov et al., 2014; Xu et al., 2013), evaluation of soil

salinity control measures (Guo et al., 2024; Ramos et al., 2023), the impacts of irrigation
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water quality on crop growth (Kanzari et al., 2024; Phogat et al., 2018; Stulina et al.,
2005), and disentangling the relationships with nutrient management (Phogat et al., 2018;
Ramos et al., 2023). Most of these studies have focused on addressing complex soil
salinization issues in arid to semi-arid regions, which are among the most severely
affected by human-induced salinization (Hopmans et al., 2021). However, findings from
these regions cannot be directly extrapolated to MSRP areas. Although MSRP systems
exhibit comparable complexities in salinization processes, their presence in humid
climates significantly alters salt dynamics and salinity build-up. In humid climates, higher
rainfall and frequent leaching events reduce the accumulation of salts compared to arid
or semi-arid conditions. However, in MSRP systems, the interaction between tidal
inflows, poor drainage, and alternating wet-dry conditions creates a unique salinity
dynamic. These factors influence the timing and extent of salt accumulation differently
than in drier regions, making it necessary to treat them as distinct systems in terms of
salinity modeling and management. This distinct climatic context demands tailored
research and a deeper understanding of these unique conditions to develop effective
management strategies. To date, this remains a critical knowledge gap in existing research

on soil salinity in MSRP areas; a gap that this study aims to address.

The specific objectives of this study are therefore: (i) to calibrate and validate the
HYDRUS-1D model for simulating soil-water dynamics and salt transport in the tidal and
associated mangrove fields in Guinea-Bissau; (ii) to compute the soil-water balance and
evaluate the impact of soil-water management on rice yields at each study site; and (iii)
to assess the effects of changing groundwater dynamics and rainfall conditions on rice
yields. The findings of this study are instrumental in enhancing rice production in Guinea-

Bissau but also in other MSRP regions across West Africa.
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3. Material and methods.

3.1. Study area
This study was conducted in three paddy rice field of three villages of Guinea-Bissau.
Elalab (12°14'48.5"N, 16°26'30.3"W), Djobel (12°16'51.3"N, 16°23'34.4"W), and Cafine
(11°12'40.4"N, 15°10'26.7" W) (Fig. 6.1). In Cafine, both tidal and associated areas were
studied, whereas only associated areas were considered in Elalab and Djobel due to the
smaller field dimensions and the need to ensure the security of dataloggers and sensors.
According to the Kdppen climate classification, the region's climate is classified as
tropical monsoon (Aw), characterized by heavy rainfall during the wet season (Beck et
al., 2018). Rainfall typically begins in June in the southern regions of Guinea-Bissau
(Cafine, Djobel) and in July in the northern regions (Elalab), ending by late September or
October (Fig. 6.1). Average annual rainfall ranges from approximately 1,500 mm in the
north to 2,500 mm in the south. Moreover, average annual temperatures are between 24

°C and 27 °C, with minimal variation throughout the year (Garbanzo et al., 2024b).

The soils exhibit hypersaline conditions, with salinity increasing in the deeper horizons.
They are classified as Inceptisols with Vertic features, characterized by limited
pedogenetic development (D’Amico et al., 2024; Teixeira, 1962). Generally, tidal
mangrove soils have rich clay content, whereas associated mangrove soils are
predominantly sandy (Garbanzo et al., 2025). Soil profiles tend to be deeper in the
southern regions compared to the northern areas. The soils also present ustic moisture
regimes, remaining dry for more than 90 consecutive days. Additionally, MSR soils have
undergone physical and chemical modifications induced by local farmers’ interventions,
having originally been mangrove forests converted for rainwater harvesting and

prevention of tidal water intrusion during rice cultivation. Table 6.1 shows the main
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physical and chemical properties of the soils in the study areas. The methodologies used

for soil characterization can be found in Merkohasanaj et al. (2025).

Atlantic Ocean

16°0'0 15°0'0 14°0'0

Fig. 6.1. Locations of the study sites in Guinea-Bissau, West Africa.

227



Table 6.1. Soil physical properties of mangrove swamp rice fields in Guinea-Bissau.

Sand [%] Siit [%] Clay [%]
Location Depth 5 0-0.05 T (<0.002 o 0C Orc Owr EC.
[m] [gem3]  [%] [emdem?d]  [emPem?]  [dSm7]
mm) mm) mm)
Cafine 0.0-0.39 19 39 42 1.09 1.37 0.327 0.214 17.4
™ 0.39-0.63 36 24 40 1.16 1.08 0.254 0.210 28.5
0.63 - 0.85 48 28 24 0.87 1.53 0.428 0.315 118.3
Cafine 0.0-0.30 17 38 45 1.17 1.04 0.371 0.190 16.0
AM 0.30-0.48 12 31 57 1.15 0.58 0.454 0.301 12.3
0.48-0.74 31 32 37 0.98 0.70 0.476 0.215 22.6
0.74—-1.18 40 35 25 0.62 0.91 0.574 0.272 105.7
Djobel 0.0-0.25 19 50 31 1.20 0.29 0.127 0.088 24.2
AM 0.25-0.50 23 55 22 1.40 0.37 0.175 0.098 13.9
0.50-0.75 15 49 36 1.55 0.27 0.122 0.091 16.4
Elalab 0.0-0.13 68 13 19 1.53 0.75 0.211 0.100 35.1
AM 0.13-0.40 44 21 35 1.65 0.47 0.341 0.131 34.4
0.40-0.53 94 2 4 1.52 0.09 0.136 0.063 21.1
0.55-0.70 84 7 9 1.51 0.08 0.094 0.062 54.2

TM, tidal mangrove; AM, Associated mangrove; OC, Organic carbon; py, bulk density; Orc, volumetric water content at field capacity. Owp, volumetric water content at wilting

point, EC,, electrical conductivity of the saturation paste extract.
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Data collection

The paddies were continuously monitored between 2022 and 2023 to study the dynamics
of water and salts. Teros 12 sensors (Meter Group, USA) were used to measure soil water
contents (SWC) and bulk electrical conductivity (ECy). The relationships between ECy
data, the electrical conductivity of the saturation paste extract (EC.), and the electrical

conductivity of the soil solution (ECsw) were as follows (Hilhorst, 2000):

80 6 ECp

ECe = 5aman M
w EC
ECqy = =" @
b
&y = 80.3 — 0.37(Tsp;; — 20) (3)
0
EC, = ECy,, o 4)

where 6 is the volumetric soil water content [L> L], 6; is the saturation water content
[L3 L3, g, is the dielectric permittivity of the bulk soil [dS m], &,, is the dielectric
permittivity of the soil pore water [dS m™'], and Tsi is the soil temperature (°C). The
sensors were installed at soil depths of 0.07, 0.15, 0.25 and 0.35 m, positioned at the
center of the rice cultivation plots at each of the four sites. Each sensors took measurement
every 20 minutes. The reliability of sensors measurements (16 unit) was assessed in the
laboratory before installation and subsequently in the field after deployment (Figure. 6.S1
of the supplementary material). For this purpose, soil cores (100 cm?) were periodically
collected (soil depths of 0.0 — 0.10, 0.10-0.20 m) for measuring volumetric soil water
contents (SWC). At the same time, disturbed soil samples were collected to determine
soil salinity, which was assessed by measuring the electrical conductivity of a 1:5 soil-to-
water extract (ECi:5) and converting it to the EC. (Sonmez et al., 2008) considering the

texture (fine, medium fine) of soil horizons where sensors were installed, as follows:
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EC, = 7.36 ECy.5 + 0.24 (6.5)

In addition, Hydros 21 groundwater level sensors (Meter Group, USA) were installed at
a depth of 2.0 m to monitor groundwater depth (GWD) next to the sensor Teros 12. In
Cafine, GWD ranged from 0 to 1.89 m in tidal areas and 0 to 1.77 m in associated areas,
with electrical conductivity (ECgw) averaging 48.3 dS m™! in tidal areas and 47.2 dS m’!
in associated areas. In Djobel, GWD ranged from 0 to 1.78 m and EC,y averaged 17.7 dS
m!. In Elalab, GWD ranged from 0 to 1.35 m, with an average ECgw of 54.1 dS m™..
Meteorological data including air temperature, relative humidity (RH), rainfall, solar
radiation, and wind speed (u2) were collected daily using Atmos 41 sensors (Meter Group,
USA). The years 2022 and 2023 were characterized by high rainfall in Elalab and Djobel,

while both years represented normal rainfall conditions in Cafine (Figure. 6.2).
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Figure. 6.2. Daily rainfall measurements and computed FAO-56 Penman Monteith

reference evapotranspiration (ET,) at the study sites.

The rice varieties Yakassau and Caublack were cultivated in Cafine, Edjur in
Djobel, while in Elalab Yakai Tomor was used, as these were the varieties used by farmers
in the fields where the sensors were installed. Table 6.2 outlines the crop growth stages
for each variety, location, and growing season. Typically, the rice-growing season in the
study areas extended from early August to late November, with the southern region
having a longer growing period due to higher rainfall compared to the northern region.
Rice transplanting generally began around the first week of September, with priority

given to areas with fresher and more abundant clean water. However, the timing of
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transplanting varied as farmers relied on traditional methods, such as salinity taste-testing,
while also considering labor availability and optimization of waterlogging levels before
planting. The most critical stages for rice growth occurred shortly after transplanting in
early September and during the flowering and grain filling. The latter occurred in late
October in the northern regions and mid-November in the southern areas, coinciding with
the final period of the rainy season. This period is particularly important for key
phenological stages such as flowering and grain filling, when the crop is most vulnerable
to environmental stress, making it crucial to maintain minimal soil salinity levels during
these times (Figure. 6.3). Lastly, during the late-season period the grains enter a drying
phase, with harvest timings varying across villages, among varieties and availability of

labor groups.

Table 6.2. Dates of the crop growth stages measured, and yield obtained at each site for
the 2022 and 2023 seasons.

Site & Rice Veur Crop growth stages AYield
Ecology  variety Initial Crop development Mid-season  Late-season (k;e;i.g:;
Cafine 2022 28/09-09/10 10/10-16/11 17/11-02/12  03/12-15/12 1807
Yakasau
™ 2023 04/10-15/10 16/10-20/11 2111-11/12 12/12-17/12 (*21%)
Cafine 2022 28/09-06/10 07/10-03/11 04/11-21/11  22/11-27/11 1750
Caublack
AM 2023 20/09-01/10 02/10-06/11 07/11-27/11 ~ 28/11-07/12 (= 11%)
Djobel 2022 20/09-01/10 02/10-30/10 31/10-16/11 17/11-22/11 2073
Edjur
AM 2023 05/09-16/09 17/09-22/10 23/10-13/11 14/11-20/11 (+8.2%)
Elalab 2022 23/09-04/10 05/10-26/10 27/10-26/11  27/11-09/12 1703
Tomor
AM 2023 15/09-26/09 27/09-31/10 01/11-30/11 01/12-12/12 (£20%)

TM, tidal mangrove; AM, Associated mangrove.
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Desired optimal salinity period

Sowingin the
nursery bed

Germination Vegetative Growth Reproductive Ripening

| DOY 209 218 225 232 | 239 246 | 253 260 | 267 274 285 286 295 309 | 316 326 | 338 344 350 356 365

| Week 4 | 1 | 2 314/ 1121314112 3!4 1121341112 73]a

|_Month | July August | September | October | November | December

*Doy =days of the year.
Figure. 6.3. The phenological stages of rice observed in the study sites during the 2022

and 2023 seasons.

3.2. Modeling approach

3.2.1. Model description
The HYDRUS-1D model (Simtinek et al., 2016, 2024) was used to numerically simulate
one-dimensional water flow and solute transport in variably-saturated porous media by
solving the Richards and the Fickian-based convention-dispersion equation (CDE),
respectively. The soil hydraulic properties were described by the Mualem-van Genuchten

functional relationships (Mualem, 1976; van Genuchten, 1980), as follows:

-6, 1

Se(h) = 0s—6,  (1+|ah/m)m (6.6)
mq 2

K(h) = K¢ [1-(1=5™)"] (6.7)

where Se is the effective saturation [-], h is the soil pressure head [cm], 0, and 0

represent the residual and saturated soil water contents [L> L], respectively, a [L™'] and
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n [-] are empirical shape parameters, Ks is the saturated hydraulic conductivity [L T™'], 1

is a parameter related to the pore connectivity/tortuosity [-], and m=1-1/1.

The sink term in the water flow equation is the root water uptake (RWU) and was
formulated based on the macroscopic approach proposed by Feddes et al. (1978). In this
approach, potential root water uptake (PRWU), which corresponds to potential crop
transpiration (T, L T™), is distributed across the root zone. PRWU may be reduced by
the presence of stress factors, such as water availability and salt content, thereby defining
the actual water uptake rate by the roots, or the actual transpiration rate (T act, L T!). In
the model proposed by Feddes et al. (1978), water uptake by the roots occurs at the
potential rate when the soil pressure head h is between h2 and h3, decreases linearly when
h >h2 and h <h3, and becomes zero when h > h1 and h < h4 (subscripts 1 to 4 represent
different pressure thresholds). On the other hand, root water uptake reductions due to
salinity stress are described with the threshold and slope function proposed by Maas
(1990). According to this function, water uptake is at its maximum when the ECeis below
the crop’s salinity tolerance threshold (EC. threshold, dS m™). Above this threshold,
water uptake decreases linearly with increasing salinity, at a rate determined by a specific
slope (s, % per dS m™!). Both reduction functions were combined under the assumption
that the effects of water and salinity stress are multiplicative (van Genuchten, 1997). Soil
salinity was represented by the ECsw, which was simulated in the CDE model as a non-

reactive tracer. The model assumes a conversion factor of ECsw / ECe = 2.

For each site, the crop water-yield linear function proposed by Doorenbos and
Kassam, (1979) was further applied to evaluate the impact of soil water and salinity

stresses on crop yields, as follows:
Yq _ ETc gct
(1 N E) =Ky (1 T ET, ) ®)
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where Y, and Y, are the actual and maximum crop yields [tonnes ha™'], respectively; ET.
act and ET. are the actual and potential seasonal crop evapotranspiration [mm],
respectively; and Ky is the yield response factor describing the reduction in relative yield

due to the relative reduction in ET caused by soil water and salinity stresses.

3.2.2. Model setup, calibration, and validation
The soil water contents and fluxes and salt transport in the four case studies during
the 2022 and 2023 growing seasons were modelled with HYDRUS-1D. For each season,
simulations run from May 15th (day 1) to December 31th (day 231). At each location, the
soil domain was modelled as a 1D column with a depth of 2.0 m, discretized into 101
nodes. Initial conditions were set by the SWC and ECsw measurements at different depths

the start of the rice-growing season.

The upper boundary conditions were defined by soil evaporation (Es), and rainfall
(rice fields are not irrigated), while the bottom boundary condition was set as the
measured GWD. Daily weather data were used to calculate the reference
evapotranspiration (ETo, mm) using the FAO56 Penman-Monteith equation (Allen et al.,
1998). The crop evapotranspiration (ET.) was then computed using the crop coefficients
(Kc) proposed by Pereira et al., (2021) for rice (flooded - anticipated cut-off), with values
of 1.05 for the initial stage, 1.20 for the mid-season stage, and 0.80 for the end-season
stage. A dual K¢ approach (K¢ = K¢, + Ke) was used for ET. partitioning, with the T¢
component calculated using the basal crop coefficient (Kcv) for each growth stage, as
proposed by Pereira et al. (2021), and the Es component, computed as Es = ET¢ — Tc. The
Keb values for the initial, mid-season, and end-season stages were 0.15, 1.15, and 0.70,

respectively. The K¢ and K¢, values were corrected for local climate conditions of relative
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humidity and wind velocity (RH and u2) and crop height following the FAOS56 procedure

(Allen et al., 1998).

For root water uptake, T. reductions due to water stress were calculated using the
parameters h1= 100 cm, h2= 55 cm, h3=—160 to —250 cm, and h4=—15000 cm (Li et al.,
2014). T reductions due to salt stress considered a EC. threshold of 3.0 dS m™, and a s
rate value of 12% per dS m™' (Minhas et al., 2020), with these parameters applied
throughout the entire crop season. For assessment of yield impacts, the Ky value was set
to 1.25 (Monteiro et al., 2013), also for the entire crop season. The root depth was
determined to vary between 0.3 and 0.5 m, depending on the location, as measured in the

field.

The calibration process involved adjusting the simulated SWC and ECsw values to
the correspondent daily observations at different depths (0.07, 0.15, 0.25 and 0.35 m)
using the numerical inversion procedure proposed by Simfinek and van Genuchten
(1996). The calibration parameters were the soil hydraulic parameters (0r, 0s, a, 1, Ks)
and soil dispersivity (A). Weighting coefficients for the different data points in the
objective function were assumed to be 1 (Gonzdlez et al., 2015). The parameter | was set
to 0.5 (Mualem, 1976). Calibration was carried out sequentially for each layer, iterating
through all four layers and restarting the process until the deviations between the
measured and simulated data were minimized and stabilized. Ultimately, to improve
model fitting, the Ks and A parameters underwent additional manual tunning. For each
location, the 2023 experimental dataset was used for model calibration, while model

validation was conducted using the calibrated parameters and the 2022 datasets.
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The goodness-of-fit indicators used to evaluate the accuracy of model simulations
were: The coefficient of determination (R2), that measures the proportion of variance
explained by the model, with values close to 1 indicating a high degree of linear fit
(Taylor, 1990). The mean absolute error (MAE) and the root mean square error (RMSE)
that quantify the average deviation between the measured and model-predicted values
(Plevris et al., 2022). MAE provides a direct measure of error, while RMSE penalizes
larger errors more heavily, providing sensitivity to the model’s performance (Hodson,
2022; Steurer et al., 2021). Moreover, the normalized RMSE (NRMSE) was calculated
to compare the relative error to the mean of the observation. Additionally, the BIAS was
evaluated, serving as an indicator to both the direction and magnitude of systematic error.
Similarly, the percentage Bias (PBIAS) was computed, to estimate the predictions’
tendency (Montgomery and Runger, 2011). A negative PBIAS value reflects an
underestimation, while positive values indicate overestimation of predicted data (Huber

and Ronchetti, 2009). The goodness-of-fit indicators were calculated as follows:
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where O; and P; represent the observed and the model-predicted values, respectively, O
is the mean of the observations.

Metrics were computed using R software version 2024.04.1 (R Core Team, 2024).
For soil salinity, the EC. served as reference for computing the goodness-of-fit indicators

and analysis of results.

3.3. Modeling scenarios
For each study site, two GWD and three rainfall scenarios were considered, in order
to evaluate their impacts on soil salinity and rice growth. The scenario analysis focused

on the following aspects:

v EC:. levels throughout the simulation, with particular attention to the growing
season.

v The number of days in the year when EC. remained below the ECe threshold.

v Impacts of soil salinity on crop transpiration (1 - Tcact / Tc) and crop yields (1 - Y,

/ Yom).
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v The window of opportunity for growing rice, defined as the salt-free period (Guei
et al., 1997).
v' Identification of sites where cultivation is feasible only with salt-tolerant rice

varieties.

The first GWD scenario reflected field conditions observed from sensor measurements in
2023. According to the site, initial GWDs ranged from 1.35 to 1.89 m. As the soil became
saturated, these depths gradually became shallower, and a water layer was formed at the
soil surface. The second GWD scenario simulated a shallower GWD, representing
conditions typically associated with dike breaches or saltwater infiltration, often caused
by inadequate maintenance or significant tidal events. In this case, the initial GWD was
set at 0.5 m and progressively rose to the soil surface with the onset of the rainy season.

The three rainfall scenarios were based on historical daily rainfall data from the AGERAS
dataset, provided by the European Center for Medium-Range Weather Forecasts
(ECMWEF) platform, part of the Copernicus project (Boogaard et al., 2020). Rainfall data
from 1979 to 2023 were analyzed, focusing on the centroid (pixel) closest to the
meteorological station used in this study. Calibration was performed by comparing
rainfall data from 2021 to 2023 using several correction schemes, including simple bias
correction, slope correction, and linear scaling correction (Teutschbein and Seibert,
2012). The linear scaling correction proved to be the most effective, with a 90-day
correction period (Figure. 6.S2 of the supplemental material). This method was applied
to the rainfall datasets, leading to the selection of three distinct rainfall scenarios
corresponding to the 20th (low), 50th (medium) and 80th (high) percentiles of total annual
rainfall for each year. The corresponding years for each scenario were as follows: for
Cafine, 1995, 1980, and 2018; for Djobel, 1980, 1988, and 1995; for Elalab, 1994, 1979,

and 2000, respectively (Figure. 6.4).
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correction was then applied, calibrated, and validated for Guinea-Bissau (Garbanzo et al.,
2025b). This data was subsequently used for calculating ET. and the soil water balance

Full meteorological reanalysis data for these years were also downloaded to calculate ET,
using the FAOS56 Penman-Monteith method (Allen et al., 1998). A simple BIAS
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Figure. 6.4. Rainfall scenarios in Cafine (A), Elalab (B), and Djobel (C) based on AgERA
5 reanalysis data.



4. Results and discussion

4.1.Model performance

Figure. 6.5 presents the measured and simulated SWC for four study sites, with the
calibrated parameters detailed in Table 6.3. For all sites, initial SWC values were low but
increased with the onset of the rainy season. Eventually, SWC reached saturation,
forming a surface water layer that created favorable conditions for rice transplanting and
growth. SWC remained close to saturation until the end of the rainfall season, after which
they decreased at most sites, facilitating grain drying and harvesting. The Elalab site was
an exception to this pattern, since the SWC values in the upper soil layers declined before
the transplanting period. This anomaly can be explained by farming operations that were
taking place at the time, which probably changed the soil physical properties in the
monitored area and affected sensor readings. According to the observations, soil
compaction may have reduced saturation values. Despite this, SWC remained relatively
stable for the rest of the growing season, suggesting that Elalab’s conditions were like
those in the other fields, with SWC near saturation and the formation of a surface water
layer. Therefore, data from Elalab were retained in the study.

The HYDRUS-1D model effectively simulated measured values during both the
calibration and validation periods, as indicated by the goodness-of-fit metrics presented
in Table 6.4. Across all sites, the R? values exceeded 0.97, demonstrating that the model
was able to explain most of the variance of measured data. The MAE and RMSE ranged
from 0.015 to 0.082 m* m and 0.027 to 0.099 m® m3, respectively. NRMSE values were
generally low. Nevertheless, the highest estimation errors were consistently measured at
the Elalab site, likely due to the issues discussed earlier. BIAS and PBIAS values were

near zero at all sites, indicating no significant over- or underestimation of measured
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values, except at Elalab. Thus, despite variations in model fit quality, consistent trends
were measured across all four study sites for all goodness-of-fit indicators during both
calibration and validation periods, suggesting the model achieved a robust overall

performance.
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Figure. 6.5. Measured and simulated soil water contents (SWC) in the four study sites
during 2023 (calibration) and 2022 (validation). TM, tidal mangrove; AM,

Associated mangrove.
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Table 6.3. Calibrated soil hydraulic and solute transport parameters.

Village Soil Depth Or 0s a n K A
(m) (m*m3)  (m’m7) (em™) ©) (cmd™) (cm)

0.0-0.1 0.070 0.505 0.045 2.45 36.1 15

Cafine 0.1-02 0.090 0.505 0.021 2.60 78.0 60
™ 02-03 0.095 0.515 0.024 2.50 190.0 90
03-0.4 0.095 0.495 0.045 1.90 106.0 90

0.0-0.1 0.004 0.514 0.039 1.55 325 55

Cafine 0.1-0.2 0.064 0.497 0.031 1.59 78.0 55
AM 02-0.3 0.090 0.472 0.010 1.65 12.0 60
03-0.4 0.004 0.528 0.009 1.60 5.1 60

Djobel 0.0-0.1 0.088 0.446 0.020 1.35 6.0 40
0.1-02 0.098 0.443 0.013 1.60 8.1 40

AM 02-023 0.091 0.430 0.022 1.38 3.6 45
0.0-0.1 0.006 0.492 0.025 2.40 374.0 35

Elalab 0.1-02 0.008 0.487 0.020 1.75 203.0 60
AM 02-0.3 0.054 0.565 0.010 1.25 316.0 90
03-0.4 0.050 0.590 0.008 1.38 49.0 90

TM, tidal mangrove; AM, Associated mangrove; 0, and 0, residual and saturated water contents,
respectively; o and 1, empirical shape parameters; K, saturated hydraulic conductivity; €, pore
connectivity/tortuosity parameter; A, soil dispersivity.

Table 6.4. Goodness-of-fit for the comparison of measured and simulated soil water

contents at the four study sites.

Study sites R? MAE RMSE NRMSE BIAS PBIAS
Q) (m* m") (m* m”) (%) O] (%)
Calibration (2023)
Cafine TM 0.99 0.016 0.027 6.18 -0.01 -0.33
Cafine AM 0.99 0.019 0.029 6.31 0.01 1.57
Djobel AM 0.99 0.017 0.031 8.56 -0.01 -3.07
Elalab AM 0.99 0.031 0.046 9.42 -0.01 -0.77
Validation (2022)
Cafine TM 0.99 0.016 0.030 6.72 0.01 0.25
Cafine AM 0.99 0.015 0.028 6.07 0.01 0.72
Djobel AM 0.99 0.025 0.040 10.93 -0.01 -1.31
Elalab AM 0.97 0.082 0.099 20.52 -0.06 -12.8

TM, tidal mangrove; AM, Associated mangrove; R?, coefficient of determination; MAE, mean
absolute error; RMSE, root means square error; NRMSE, normalized root mean square error;
PBIAS, percent Bias.
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Similarly, HYDRUS-1D simulations effectively captured the overall trend of soil
salinization across the study sites, with high EC. values at the beginning of the rainy
season gradually decreasing to levels more suitable for rice cultivation (Figure. 6.6). The
goodness-of-fit indicators were satisfactory (Table 6.5), with R? values consistently above
0.82. The MAE and RMSE values exhibited large variation in the four study sites, ranging
from 0.39 to 4.01 dS m™! and 0.49 to 5.72 dS m™!, respectively. At the Elalab site, as
expected, the poorer fit of the model to measured SWC data also affected EC. simulations,
leading to higher estimation errors. However, the model successfully captured the same
trends of field data. There was a consistent tendency to underestimate measured ECe

values across all study sites, as indicated by the negative BIAS and PBIAS values.
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Figure. 6.6. Measured and simulated values of electrical conductivity of the saturation

paste extract (ECe) at the four study sites during 2023 (calibration) and 2022

(validation). TM, tidal mangrove; AM, Associated mangrove.
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Table 6.5. Goodness-of-fit for the comparison of measured and simulated values of the

electrical conductivity of the saturation paste extract (EC.) at the four study

sites.
R? MAE RMSE NRMSE BIAS PBIAS
Study sites
[-] [dS m] [dS m™'] [%o] [-] [%o]
Calibration (2023)
Cafine TM 0.95 1.50 1.68 34.84 -1.42 -29.41
Cafine AM 0.94 2.06 2.70 41.88 -1.98 -30.69
Djobel AM 0.93 0.52 0.65 35.79 -0.47 -25.93
Elalab AM 0.90 4.01 5.72 46.26 -3.96 -32.96
Validation (2022)
Cafine TM 0.92 0.77 1.20 32.34 0.28 7.56
Cafine AM 0.82 1.88 2.57 62.37 -0.51 -12.48
Djobel AM 0.93 0.39 0.49 27.41 -1.88 -10.34
Elalab AM 0.85 3.23 4.09 42.34 -0.21 -0.209

TM, tidal mangrove; AM, Associated mangrove; R?, coefficient of determination; MAE, mean
absolute error; RMSE, root means square error; NRMSE, normalized root mean square error;
PBIAS, percent Bias.

The HYDRUS-1D model has been widely used to evaluate irrigation water
management in paddy fields (Li et al., 2015, 2014; Mo’allim et al., 2018; Shekhar et al.,
2020), but few studies so far have focused on salinity management (Phogat et al., 2010).
Additionally, the model has been extensively applied to soil salinity management in
various agricultural systems with shallow saline groundwater conditions (Forkutsa et al.,
2009; Guo et al., 2024; Karimov et al., 2014; Ramos et al., 2023), which may partially
resemble those in the study areas. While these applications have provided valuable
insights into addressing various management challenges, the modeling approach typically

used, simulating ECsw as a non-reactive tracer, remains relatively simplistic.

As a result, deviations between model results and observations may become more
pronounced when omitted processes become relevant. In this study, model performance
was generally acceptable across all sites. However, a closer analysis of Figure. 6.6 reveals

larger deviations between model results and measured data across all sites during the non-
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growing season compared to the growing period. Simulated EC. values were generally
higher than the measured data, suggesting that precipitation and dissolution processes,
which were not accounted for in the modeling approach, may have played a significant
role during the dry period. Salt precipitation, influenced by both rainfall water and soil
chemistry, affects soil-solution salinity. In arid regions, calcite precipitation often occurs
during irrigation at low leaching fractions, reducing the salt load by 5-25% at the bottom
of the root zone and lowering ECsyw throughout most of the root zone, except for the upper
layer. When irrigation water contains elevated concentrations of sulfate and calcium,
gypsum precipitation can also significantly reduce root zone ECsy (Hopmans et al., 2021;
Letey et al., 2011). Although the study sites were not irrigated, the dry conditions that led
to salt accumulation in the soil profile during the non-growing season further promoted

salt precipitation, as observed in situ (Garbanzo et al., 2024b; Merkohasanaj et al., 2025).

An additional factor reducing ECsw below the levels predicted by simulation models
during the non-growing season dry period is the nonlinearity between water EC and actual
salt concentration (Letey et al., 2011). While the EC-to-salt concentration ratio decreases
with increasing concentration, the model keeps assuming a ECsy increase as SWCs
decrease (Ramos et al., 2011). Further issues related to conversion factors include the
ECsw/ECe = 2 relationship used in HYDRUS-1D. This ratio, based on a common
approximation for soil water contents near field capacity in medium-textured soils, may
vary for soils with different textures and moisture levels (Skaggs et al., 2006), such as the
dry condition observed at the beginning of the simulation period and the saturated
conditions measured later during the growing season. Moreover, this relationship differs
from those used for converting soil sensor data, potentially introducing inconsistencies

when comparing measured and simulated datasets.
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Lastly, as in any modeling application, goodness-of-fit depends on the quality of
the measured data. In extremely dry conditions, sensors used to measure SWC and ECy
may be less reliable (Corwin and Lesch, 2005). Water is the primary medium for electrical
current conduction, and ion mobility is also significantly reduced at lower SWCs.
Additionally, the relationship between SWC and ECy, becomes highly nonlinear outside
the sensor's calibration range, complicating the accurate interpretation of sensor data.
Furthermore, in dry soils, the contact between electrodes and the soil is less effective,

increasing electrical resistance at the interface and resulting in inaccurate readings.

4.2. Salinity impact on rice yields

Table 6.6 summarizes the soil water balance for the four study sites during the 2022
and 2023 rice growing seasons, calculated using HYDRUS-1D. It also details the
estimated effects of osmotic stress on crop transpiration rates and their subsequent
impacts on rice yields. Precipitation is reported for the pre-season (from the start of
simulations to the transplanting date at each site and growing season) and the growing
season itself. Because plots are surrounded by bunds, which allow for the full capture and
retention of rainwater, total precipitation is considered to be effectively harvested and
used within the system. However, due to the characteristics of MSRP systems, the soil
water balance for the growing season includes infiltrated water as an input, as water may
originate during the pre-season, instead of the effective precipitation term typically used
in soil water balance analyses. The soil water balance closing errors are small, ranging
from 0.0% (Elalab AM field, 2022) to 3.31% (Elalab AM fields, 2023), being primarily

due to rounding in intermediate calculations.

As shown in Section 3.1, soil salinity in the monitored sites tends to increase

significantly during the dry season as salts are transported upwards from the saline
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groundwater table due to high soil evaporation. In tidal areas, salinity further increases
when the soil surface is temporarily submerged by seawater. With the onset of the rainy
season, soil salinity in the rice fields decreases to levels suitable for cultivation. Longer
rainy seasons and greater rainfall enhance the leaching of salt from surface layers,

creating favorable conditions for rice growth.

Djobel AM fields exhibited the most favorable conditions for rice cultivation during
both years. This site is located further away from the coast (Figure. 6.1) and recorded the
lowest ECgw values (17.7 dS m™') compared to the other sites. Despite the high silt content
in the soils, which can hinder salt leaching, the substantial rainfall both before the growing
season (1,003-1,325 mm) and during the growing season (362-242 mm) efficiently
leached salts and maintained EC. values below the defined threshold (3.0 dS m™) during
both growing periods. Therefore, root water uptake and rice yields were unaffected by

osmotic stress.

In Cafine, salt dynamics differed significantly between tidal and associated areas.
Initial EC. and ECgw values were slightly higher in the tidal area compared to the
associated area. In 2022, higher rainfall (>2,600 mm) was sufficient to leach salts from
the associated area but not the tidal area, primarily due to higher infiltration rates in the
associated area. Additionally, from the middle of the growing season onward (Figure.
6.6), significant capillary rise fluxes in the tidal area caused salts to move upward into the
root zone, adversely affecting crop yields. In 2023, lower rainfall levels led to reduced
pre-season leaching in both areas. While the amount of infiltrated water during the
growing period was comparable to the previous year, the reduced pre-season rainfall was

less effective at removing salts, further impacting crop yields.
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Elalab exhibited the most challenging conditions for rice cultivation. The GWD
was shallower (0—1.35 m) and more saline (ECgw of 54.1 dS m™) compared to other
sites. Despite substantial rainfall both before (1,091-1,508 mm) and during (282-366
mm) each growing season, along with sandy soils that could potentially promote drainage,
the rainfall was insufficient to lower root-zone EC. values below the defined threshold
(3.0 dS m™) in either growing period. As a result, root water uptake was significantly
affected, leading to an estimated yield reduction of 44% to 60% compared to rice grown

under optimal conditions.
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Table 6.6. Soil water balanced during the 2022 and 2023 rice growing season.

P Growing season
Villages Pnas Pcs I CR ASS T. Te act E DP 1-Te act/ T 1-ETc acet/ETe 1-Ya/Ym
[mml] [mml] [-]

Cafine TM

2022 2376 287 337 210 0 249 223 128 197 0.11 0.07 0.09

2023 1419 442 309 141 0 241 176 114 168 0.27 0.18 0.23
Cafine AM

2022 2314 339 800 0 0 217 216 106 498 0.01 0.01 0.01

2023 1393 467 722 6 4 267 231 119 386 0.13 0.09 0.12
Djobel AM

2022 1325 242 529 1 50 217 216 106 272 0.00 0.00 0.00

2023 1003 363 694 18 25 267 267 124 355 0.00 0.00 0.00
Elalab AM

2022 1508 282 316 87 39 290 151 100 191 0.48 0.36 0.44

2023 1091 366 369 91 47 312 102 127 295 0.67 0.48 0.60

TM, tidal mangrove; AM, Associated mangrove; P, precipitation; Pxgs, precipitation in non-growing season; Pgs, precipitation in growing season; I, Infiltration; CR, capillary
rise; T¢, potential crop transpiration; T a, actual crop transpiration; Es, soil evaporation; DP, deep drainage, ASS, variation in soil water storage; ET., potential crop

evapotranspiration, ET. a, actual crop evapotranspiration; Y,, actual yield; Ym, maximum yield.
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4.3. Rainfall and groundwater depth scenarios

Table 6.7 summarizes the results of modeling scenarios that account for low,
medium, and high rainfall seasons, as well as shallow and observed GWD conditions.
Table 6.7 presents the mean rootzone electrical conductivity (ECe mean) during the
growing season, the number of days with EC. below the salinity tolerance threshold (3.0
dS m™) for both the growing season and the entire simulation period, and the relative
effects of soil salinity on crop evapotranspiration rates and crop yields. For all the
scenarios, the most adverse conditions consistently occurred with lower seasonal rainfall

and shallower GWD.

Consistent with field monitoring results, Djobel demonstrated the most favorable
conditions for rice production in every scenario since the EC. mean generally remained
below the salinity tolerance threshold. Furthermore, in cases where EC. exceeded the
defined threshold (low and medium rainfall with shallow GWD scenarios), the impacts
on crop yields were minimal (<6%). Although rainfall distribution and root water uptake
significantly influence these outcomes, it is reasonable to assume that under the measured
GWD conditions, the salt-free period could be extended. This extension may allow for
earlier rice transplantation, anticipating the growing season to mitigate potential salinity
issues at its end (Figure. 6.7). However, under shallow GWD conditions, this strategy
may fail, as the salt-free period might be shorter than the period used to define the growing
season. In the worst-case scenario (low rainfall and shallow GWD), no salt-free period

occurs, though, as noted, the impacts on crop yields remain minimal.

In the Cafine AM site, conditions for rice cultivation were acceptable for most

scenarios. Although only the most favorable scenario exhibited a mean EC. below the
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salinity tolerance threshold and a salt-free period extending beyond the growing season
(Figure. 6.S3, supplemental material), the impacts on crop yields were relatively minor
(<10%) in most scenarios, except under the worst-case conditions (low and medium
rainfall with shallow GWD). In contrast, scenarios for the Cafine TM site consistently
failed to provide satisfactory conditions for rice cultivation (Figure. 6.S4, supplemental
material), with yield reductions ranging from 19% to 46%. At the Elalab site (Figure.
6.S5, supplemental material), conditions were even more unfavorable, with estimated

yield reductions ranging from 58% to 82%.

254



Table 6.7. Estimated salt-free period for different rainfall (low, medium, and high) and groundwater depth (shallow and measured GWD)

scenarios and corresponding impacts on crop yields (ECe threshold = 3.0 dS m™).

. ECe mean N° Days EC. < ECe threshold 1-Teact/Te 1-ET¢ ao/ET. 1-Ya/Ym
Scenarios 1 Growing - - -
[dS m™] season Simulation period [-1 [-1 [-1
Cafine TM
Low rainfall x GWDbserved 5.2 0 0 0.28 0.20 0.25
Low rainfall x GWDshatiow 7.6 0 0 0.53 0.37 0.46
Medium rainfall X GWDbserved 4.8 0 0 0.22 0.16 0.19
Medium rainfall X GWDghatiow 6.8 0 0 043 0.30 0.38
High rainfall x GWDobserved 4.3 0 0 0.21 0.15 0.19
High rainfall X GWDshaliow 6.1 0 0 0.42 0.29 0.37
Cafine AM
Low rainfall X GWDobserved 5.1 0 0 0.22 0.16 0.20
Low rainfall X GWDgpaiiow 8.1 0 0 0.48 0.34 0.43
Medium rainfall X GWDgbserved 4.2 0 0 0.11 0.08 0.10
Medium rainfall x GWDshaliow 6.7 0 0 0.37 0.26 0.33
High rainfall x GWDobserved 2.7 55 82 0.07 0.05 0.07
High rainfall x GWDshaitow 4.5 0 0 0.18 0.13 0.16
Djobel AM
Low rainfall x GWDpserved 2.4 69 129 0.01 0.01 0.01
Low rainfall x GWDshatiow 39 0 0 0.07 0.05 0.06
Medium rainfall X GWDbserved 2.0 76 142 0.00 0.00 0.00
Medium rainfall X GWDgpaiiow 3.1 45 45 0.02 0.02 0.02
High rainfall x GWDgpserved 1.8 78 153 0.00 0.00 0.00
High rainfall x GWDshaliow 2.7 64 64 0.01 0.01 0.01
Elalab AM
Low rainfall X GWDobserved 10.3 0 0 0.74 0.55 0.69
Low rainfall x GWDyshatiow 11.5 0 0 0.88 0.65 0.82
Medium rainfall X GWDpserved 8.9 0 0 0.63 0.47 0.58
Medium rainfall X GWDghatiow 154 0 0 0.80 0.59 0.74
High rainfall x GWDobserved 8.6 0 0 0.66 0.50 0.62
High rainfall x GWDhaltow 9.8 0 0 0.83 0.62 0.77

TM, tidal mangrove; AM, Associated mangrove; ECc mean, mean EC. in the rootzone; T., potential crop transpiration; Te a, actual crop transpiration; ET., potential crop
evapotranspiration, ET. a, actual crop evapotranspiration; Y, actual yield; Y, maximum yield.
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Figure. 6.7. Salt-free period (grey area) for the rainfall scenarios (low, medium, and high)
and groundwater depth (GWD identifies shallow groundwater depth)
conditions at the Djobel Associated Mangrove (AM) site (ECe threshold = 3.0
dSm™).

The scenario analysis emphasizes the need for cultivating salt-tolerant rice varieties
in Cafine TM (and eventually Cafine AM) and Elalab. Due to the lack of specific
information on the ECe tresholds for the varieties grown in these areas (Yakasau, Caublack,
Edjur, and Tomor), the commonly accepted threshold limit for rice (3.0 dS m™") was used
in the present study. However, since some of these varieties may exhibit higher salinity
tolerance than the defined threshold, additional simulation scenarios were conducted,
considering an ECe threshold 0f 5.0 dS m™* for both Cafine locations and 10 dS m™ for Elalab

(Table 6.8). These ECe thresholds are provided solely for illustrative purposes, as they are

defined based on a review of existing literature review (Fageria, 1985; Haque et al., 2021;

256



IRRI, n.d.; Reddy et al., 2017), since the crop tolerance thresholds values for local

varieties are unknown.

Although the mean EC. rootzone values remain unchanged, the use of salt-tolerant
crop varieties in Cafine TM and Cafine AM offers a promising opportunity to boost crop
production by mitigating the effects of salinity on yields. Furthermore, under the
measured GWD conditions, the period during which salinity levels remain below the
assigned threshold is prolonged in both locations. In Cafine TM, this extension facilitates
the scheduling of transplanting dates with a reduced risk of salinity affecting rice yields
(Figure. 6.8), similarly to the conditions measured in Djobel. On the other hand, in Cafine
AM, improvements in salt conditions are evident only toward the end of the cropping
season (Figure. 6.9). In Elalab, the rice-growing conditions also improve around the
middle of the cropping season (Figure. 6.10). However, crop yields are inevitably

reduced, by 19% to 48%, due to persistently high salinity levels at this site.
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Table 6.8. Estimated salt-free period for different rainfall (low, medium, and high) and groundwater depth (shallow and measured GWD)

scenarios and corresponding impacts on crop yields.

ECe mean N° Days EC. < ECe threshola 1-T¢ 2t/ Te 1-ET. 2o/ ET 1-Ys/Ym
Scenarios 1 Growing . . .
[dS m™] season Simulation period [-] [-] [-1
Cafine TM (ECe threshola = 5.0 dS m™)
Low rainfall x GWDobserved 5.5 37 61 0.08 0.06 0.07
Low rainfall x GWDsnattow 7.8 0 0 0.27 0.19 0.23
Medium rainfall X GWDgbserved 4.9 53 84 0.12 0.09 0.11
Medium rainfall x GW Dspattow 7.0 0 0 0.36 0.26 0.32
High rainfall x GWDobserved 4.4 52 94 0.08 0.05 0.07
High rainfall x GWDghatiow 6.4 0 0 0.26 0.18 0.23
Cafine AM (ECe threshoid = 5.0 dS m™)
Low rainfall X GWDogbserved 5.0 47 54 0.10 0.07 0.09
Low rainfall x GWDsnatiow 8.0 0 0 0.28 0.20 0.25
Medium rainfall x GWDobserved 4.1 63 75 0.06 0.04 0.07
Medium rainfall x GWDgpattow 6.6 11 15 0.20 0.14 0.18
High rainfall x GWDogbserved 2.6 78 105 0.07 0.05 0.06
High rainfall x GWDghatiow 44 54 69 0.14 0.10 0.13
Elalab AM (ECe threshola = 10.0 dS m™)
Low rainfall x GWDogbserved 12.1 19 19 0.34 0.25 0.31
Low rainfall x GWDgpattow 13.7 0 0 0.52 0.39 0.48
Medium rainfall x GWDopserved 10.2 59 77 0.21 0.16 0.19
Medium rainfall X GWDspaiow 12.2 11 11 0.39 0.29 0.36
High rainfall x GWDobserved 10.1 50 87 0.27 0.20 0.26
High rainfall x GW Dghatiow 11.8 31 36 0.47 0.35 0.43

TM, tidal mangrove; AM, Associated mangrove; ECe mean, mean EC. in the rootzone; T., potential crop transpiration; Te a, actual crop transpiration; ET., potential crop
evapotranspiration, ET. a, actual crop evapotranspiration; Y, actual yield; Y, maximum yield.
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Figure. 6.8. Salt-free period (grey area) under varying rainfall scenarios (low, medium,
and high) and groundwater depth (GWD identifies shallow groundwater
depth) conditions at the Cafine Tidal Mangrove (TM) site (ECe threshold = 5.0
dS m™).
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Elalab AM
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Figure. 6.10. Salt-free period (grey area) under varying rainfall scenarios (low, medium,
and high) and groundwater depth (GWD identifies shallow groundwater
depth) conditions at the Elalab Associated Mangrove (AM) site (ECe threshold
=10.0dSm™).

4.4. Driving mechanisms for salinity build-up in MSRP

The findings of this study provide quantitative insights into the issues reported by
(Bos et al., 2006) and Van Ghent and Ukkerman, (1993), who highlighted the likelihood
of salinity problems in MRSP areas resulting from saline water intrusion and the upward
movement of salts from deeper soil layers through capillary fluxes. These factors often
lead to severe disruptions or complete loss of annual rice production. Despite the
challenges discussed earlier, model simulations effectively captured the dynamics of soil
water and salinity in MSRP field. During the non-growing season, SWCs are low, leading
to significant salt accumulation in the root zone. This salinity build-up primarily results
from salts transported upward by capillary fluxes driven by soil evaporation. In tidal
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areas, tidal effects can also cause additional salt deposition on the soil surface. At the
onset of the rainy season, soil salinity gradually decreases to levels suitable for rice
cultivation. The extent of this reduction depends on the seasonal rainfall amount and

distribution, groundwater depth, and groundwater salinity.

Seasonal rainfall provides the primary mechanism for flushing salts from the root
zone. In the monitored period and modeling scenarios, years with the highest rainfall
consistently produced the most favorable conditions for rice growth. However, prolonged
dry spells can allow salts to migrate back into the root zone through upward fluxes. In
irrigated paddy fields located in salt-affected areas, this issue would be more easily
handled with irrigation (Kitamura et al., 2006; Marcos et al., 2018; Sugimori et al., 2008;
Zeng et al., 2003). In contrast, MSRP systems, which rely solely on rainfall, depend
heavily on well-distributed rainfall to prevent salinity build-up and avoid osmotic stress
that could compromise crop yields. This challenge was particularly evident in the soil

water balance estimates for the Cafine and Elalab sites.

Similar to other agricultural systems with shallow groundwater, the depth of the
groundwater influences the effectiveness of salt leaching (Guo et al., 2024; Karimov et
al., 2014; Liu et al., 2022; Narjary et al., 2021; Ramos et al., 2023). The shallower the
groundwater, the more difficult it becomes to flush salts away from the root zone, and the
stronger the upward fluxes during dry spells in the growing season when rainfall fails. In
this study, the modeled scenario with a shallower initial GWD always presented worse
conditions for salt leaching than those scenarios with deeper initial GWD, in cases of
dikes’ degradation and/or occurrence of significant high and strong tidal events.
Naturally, the closer the agricultural fields are to the shoreline, the higher the risk of saline
water intrusion, the worse the quality of groundwater, and the higher the risk of more salts

moving upward and soil salinity build-up.
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4.5. Soil salinity management in MSRP systems

Rice is classified as a sensitive crop to salinity-stress (Ayers and Westcot, 1985;
Minhas et al., 2020). Thus, in MSRP it is essential to reduce soil salinity to levels suitable
for rice production. However, as demonstrated in this study, the inter- and intra-annual
variability of rainfall amounts and distribution significantly affects salt dynamics, posing
serious challenges to rice cultivation under rainfed agriculture. During drought
conditions, elevated soil salinity will inevitably impact rice yields. In a climate change
context, prospects are further uncertain. While the MSRP systems rely solely on rainfall
to lower soil salinity, adopting improved management practices is recommended to
mitigate salinity and support sustainable rice production. However, although the
principles for cultivating crops in saline environments are well understood and promote
the use of specialized crop-soil-water management techniques, it is crucial to
acknowledge that profit margins for agriculture under saline conditions are typically low,
and saline soils always present a risk of crop failure (Minhas et al., 2020). Consequently,
while some practices and strategies can enhance rice production in the study areas, they
alone cannot close the significant yield gap between low external-inputs agriculture in
these marginal regions and the more productive edaphoclimatic regions, namely of Asia,
where rice is cultivated with mechanization, irrigation, a heavy use of agrochemical and
the so-called high yielding varieties (HYV), which would not survive under Guinea-

Bissau’s MSRP fields.

This study clearly illustrates the importance of identifying the optimal window for
growing rice in associated and tidal mangrove areas. While, in most sites, this period does
not exactly correspond to a salt-free period as defined by Guei et al., (1997), it remains

the only time when conditions for growing rice are most favorable. Depending on the
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amount of rainfall, rice transplantation in some locations (e.g., Djobel) could occur earlier
than the dates considered in this study. This would prevent salinity from impacting crop
growth at the end of the growing cycle as rainfall ceases. Alternatively, since the dry
period is essential for drying grains, to bring forward to transplant earlier would also
enable the cultivation of more productive rice varieties with longer growing cycles. For

this reason, establishing a monitoring network for soil salinity levels is crucial.

In some locations, soil salinity levels never drop below the threshold defined in
literature as the tolerance limit for rice. In such cases, and depending on the amount of
rainfall, the impacts on the crop throughout the season may be minor (e.g. Cafine AM).
However, in other situations, rice production may only be viable by growing salinity-
tolerant varieties (e.g., Cafine TM, Elalab AM). This could explain the preferences of
farmers for certain rice varieties, which are locally described as highly resistant to salinity
(Temudo, 2011). However, precise information on the EC. thresholds of these varieties
is still lacking, highlighting a significant gap in understanding their full potential under
saline conditions. Gaining knowledge of the local ECe thresholds will help identify
optimal salinity tolerance levels and improve rice cultivation strategies in the country by

leveraging the potential of local rice varieties.

To mitigate global warming impact on MSRP it is crucial to keep the groundwater
table at deeper levels at the start of the rainfall season, thereby facilitating early salt
leaching and minimizing soil salinity levels. For this purpose, an increase in the width
and height of the main dike, the regular maintenance of MSR fields’ dikes and related
drainage structures is mandatory. Additionally, the selection of the most salt- and
drought-tolerant local varieties for risk-prone areas and a better adaptation of the
agricultural calendar to present rainfall distribution conditions are also the most needed

adaptation measures.
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5. Conclusions

This study simulated the soil water and salinity dynamics in the mangrove swamp
rice production system of Guinea-Bissau, which is essential for food security but faces
several environmental challenges due to the critical role of rainfall in the viability of rice
production. The HYDRUS-1D model was successfully used to describe the salt dynamics
in four locations, with RMSE varying from 0.49 to 5.72 dS m ' and NRMSE values
ranging from 27.4% to 62.3%. The main factors influencing soil salinity involving
seasonal rainfall amount and distribution, and groundwater depth and quality.
Management strategies to address soil salinity were also discussed, such as the possibility
of growing longer and more productive varieties in certain areas or the need to cultivate
salt-tolerant varieties in others. The maintenance and improvement of drainage structures

was found to be critical for minimizing salinity issues in paddy fields.

While these findings may help improve the livelihoods of local populations, rice
production in GB faces additional limitations that keep production levels behind those of
similar areas worldwide, particularly in the absence of support from governmental and
external entities. Future studies should focus on refining groundwater management
strategies, particularly regarding the maintenance of optimal groundwater levels to
mitigate the impact of salinity stress on rice growth. Additionally, further research is
needed to determine the salinity tolerance thresholds of locally adapted rice varieties, as
these thresholds were shown to vary significantly across the studied sites. Understanding
these thresholds will be crucial for developing targeted cultivation strategies, ensuring the
optimal transplanting period, and improving rice production. Considering the potential
reintroduction of brackish water during the dry season in fields with modern water
management infrastructures, the model developed is going to be further improved to this

aim in collaboration with some of the country’s organizations.

265



6. Supplementary material

6.1. Supplementary A. Sensor Calibration
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Figure. 6.S1. Comparison of volumetric water content and electrical conductivity values

using sensor Teros 12 and observed / laboratory information.
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6.2. Supplementary B. Rainfall correction
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Figure. 6.S2. Calibration of ERA 5 reanalysis using slope, bias and linear scaling

correction for rainfall in Guinea-Bissau, west Africa.
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6.3. Supplementary C. Modeling conditions at the Cafine Tidal site.
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Figure. 6.S3. Salt-free period (grey area) under varying rainfall scenarios (low, medium,

and high) and groundwater depth (GWD identifies shallow groundwater

depth) conditions at the Cafine Tidal site (ECe threshold = 3.0 dS m™).
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6.4. Supplementary D. Modeling conditions at the Cafine Associated site.
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Figure. 6.S4. Salt-free period (grey area) under varying rainfall scenarios (low, medium,
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depth) conditions at the Cafine Associated site (ECe threshold = 3.0 dS m™).
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6.5. Supplementary B. Modeling conditions at the Elalab Associated site.
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Figure. 6.S5. Salt-free period (grey area) under varying rainfall scenarios (low, medium,
and high) and groundwater depth (GWD identifies shallow groundwater
depth) conditions at the Elalab Associated site (ECe threshold = 3.0 dS m™).
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Chapter 7

General Discussion and Conclusions
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7. Discussion

7.1. Integrating Chapter Findings: understanding of Soil Properties,

Water Management, and Salinity in MSRP

This thesis introduces a novel approach for characterizing the physicochemical properties
of soils in mangrove swamp rice fields and quantifying the soil hydro-saline balance.
Considering a regional perspective by evaluating rice production management in different
coastal villages in the northern and southern regions of GB, using the rice fields of Elalab
and Cafine — Cafal villages respectively, as case studies. In some instances, existing
information from the Oio region (more at the center of the coastal area) was also
considered, with Enchugal serving as a case study to examine the spatial distribution of
salinity. The results underscore the importance of integrating agro-ecological site
descriptions to elucidate the influence of environmental constraints on water regulation
and salinity dynamics on a regional scale. Distinctive micro-environments are generated
by differences in rainfall distribution, soil composition and tidal regimes, and these
inform and support local farmers’ management decisions. This comprehensive approach

enables a comparative understanding of system characteristics at a national level.

Chapter 2 provided an in-depth analysis of the structural and functional features of the
Mangrove Swamp Rice Production (MSRP) system, emphasizing the challenges arising
from insufficient knowledge regarding soil and water management practices. The analysis
identified recurrent dike failures, inadequate agricultural infrastructure and spatio-
temporal variability in rainfall as key factors that necessitate the adoption of site-specific
management strategies by both farmers and institutional actors. The three main
constraints were the lack of information on weather variables, irregular rainfall

distribution, and limited knowledge of land and water management. Understanding the
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environmental and infrastructure challenges helps to recognize where the MSRP system
is vulnerable and how local communities have come up with practical ways to adapt and

handle those challenges.

Insights derived from farmer interviews, initially presented in Chapter 2 and further
substantiated by the analyses in Chapter 3, reveal that the management of the MSRP
system is predominantly governed by indigenous, experience-based knowledge
embedded within specific ethnic traditions. Notably, communities in the northern regions
demonstrate greater proficiency in water management than those in the south (Figure 3.7),
largely due to adaptive modifications in plot geometry and bund construction aimed at
maximizing water retention (Figures 3.5 and 3.6). The Chapter 3 findings suggest that the
configuration and scale of plots and bunds in northern sites are more effective at

regulating water levels than their southern counterparts.

This opened the possibility of studying the distribution of salt both at the plot and whole
field levels. Results showed that salt concentrations could reach levels exceeding
hypersalinity in tidal mangrove areas (TM) (Figure 4.6). In contrast, other regions of the
rice fields, such as the associated mangrove (AM), showed low or negligible salt
concentrations. This suggests that it is highly probable that the AM plots exhibit lower
levels of hypersalinity compared to TM ones, which aligns with the literature reviewed
in Chapter 2. Despite this contrast, local farmers tend to favor TM areas for cultivation,
because they value their higher soil fertility and superior rice yields, even though such

sites are more exposed to environmental risks.

Furthermore, this thesis introduces practical applications using two types of maps to
optimize system management. The first set of soil plasticity maps introduced in Chapter

3, serve as operational tools to support decision-making during land preparation. These
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maps enable farmers to determine the optimal water content for tillage, allowing them to
align their labor input with the most suitable moisture conditions for ploughing. This
study demonstrated significant variation in soil texture and plastic limits both within a
single village and between different villages, providing farmers with valuable insights for

their management decisions.

The second analytical tool, presented in Chapter 4, focuses on identifying spatial
gradients of soil salinity and distinguishing between areas of low and high salt
concentration. Building directly upon the framework established in Chapter 3, this study
employs soil texture as a covariate to improve the accuracy of identifying saline site.
Accurate identifying these areas enables more targeted plot management, allowing
desalination techniques to be explicitly applied to the most hypersaline locations. A
practical example would be selecting salt-tolerant rice varieties and planting them in these
hypersaline areas. However, this system is vulnerable to dike breaches (See Video:

https://www.youtube.com/watch?v=niwk9uxXQCO0), which must be quickly repaired, as

such breaches lead to increased salt concentrations, crop production failure, and hunger
in the following year. Therefore, accurately identifying saline sites would improve the
management of the MSRP, where either desalination techniques or salt-tolerant varieties
could be applied to specific sites, enabling site-specific production strategies within the

system.

Then, Chapters 2, 3, and 4 provide essential data for the development of the saline water
balance model for the MSRP system. Chapter 2 identifies key constraints related to
rainfall variability and ECe, highlighting the importance of incorporating low, medium,
and high rainfall scenarios into the saline balance analysis. Chapter 3 contributes critical
parameters for model calibration, including the physical characteristics of the study sites

and detailed information on the rice varieties cultivated by local farmers. These include
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the most widely used varieties, their phenological stages, and typical planting and
harvesting schedules. In addition, chapter 4 presents the identification of saline zones and
observed EC. concentrations present within the MSRP system. This information is basic
for the parameterization and calibration of the Hydrus-1D model and for constructing
realistic rainfall scenarios to simulate the system’s response under varying environmental

conditions.

Since the hydro-saline balance model was designed to simulate realistic conditions for
rice cultivation, it was essential to incorporate crop-specific parameters such as crop
transpiration (ET.) and soil evaporation (Es). Chapter 5 of this thesis focuses on the
calculation of daily reference crop evapotranspiration (ET,) using the FAO Penman-
Monteith (FAO-PM) method, which is a key variable in determining ET.. ET, is therefore
an analytical input for quantifying the saline water balance in the MSRP. This chapter
introduces a practical tool developed for farmers and agricultural technicians in GB,
allowing ET, to be estimated using only temperature data. That means, temperature is one
of the most accessible and easy-to-measure meteorological variables, as it does not
require specialized equipment and thermometers could be available in rural areas. With
careful daily temperature readings, it is possible to indirectly calculate ET,, making this
method particularly useful in data-scarce regions. In summary, the main outputs of this
chapter were the estimation of ET, for each site using a simplified and accurate approach,
and the potential use of gridded weather data in the absence of weather station

observations.

The thesis is also linked to other research lines within the Malmon project, such as the
analysis of physicochemical characteristics discussed by Merkohasanaj et al. (2025) and

the rice crop monitoring work discussed by Céspedes et al. (2025). These collaborations
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establish a strong interdisciplinary nexus, fostering the integration of soil science,

agronomy, and environmental monitoring within a unified research framework.

The physicochemical studies of soil profiles were essential for developing chapter 6.
Merkohasanaj et al. (2025) involved detailed analyses of the soil's chemical and physical
properties, providing valuable insights into the soil's fertility, salinity, and water retention
capacity. Complementarily, Céspedes et al. (2025) conducted an in-depth characterization
of rice plant growth dynamics, the outcomes of which were instrumental in the
construction and calibration of the HYDRUS-1D monitoring model employed in this

research.

Finally, Chapter 6 explores how water and dissolved salts move through the soil,
introducing the hypothesis that the rice varieties cultivated by local farmers are well
adapted to the specific conditions of the MSRP system. This adaptation may allow the
plants to uptake water more efficiently, even under saline conditions. In this part of the
thesis, all previously generated outputs are integrated as inputs to construct the saline
water balance. This framework is then used to analyze different scenarios in depth,
focusing on how rainfall patterns and fluctuations in groundwater levels influence water

availability and salinity dynamics within the system.

However, Chapter 6 did not include an analysis to determine the salinity threshold of rice
varieties in GB. This is a significant research gap, as understanding the salinity threshold
of rice varieties is crucial for selecting the most suitable varieties for cultivation in
different areas of GB. This underscores the need for further investigation into water and

solute balances in MSRP soils, and inspires future studies in this area.
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7.2. Addressing knowledge Gaps: Spatial variability and salt

accumulation in MSRP

This study aligns with findings from existing literature on the identification and
characterization of salt content in the system. First, it was found that the cations
responsible for soil salinity in MSRP are Na and Mg, which is consistent with the finding
of Andreetta et al., (2016), D’Amico et al., (2024), Merkohasanaj et al., (2022, 2025).
Their concentration varied depending on proximity to the village, with some areas
showing hypersaline characteristics as described by Sylla (1994) and Sylla et al. (1995).
However, despite the high salt content in these sites under initial conditions, rice
cultivation is still possible, provided that highly salt-tolerant varieties (e.g., Emana Manai,
as discussed in Chapter 2) are used, along with a significant amount of freshwater
harvested to dilute the salt concentrations. This strategy enables the establishment of a
free-salt period, as described by Guei et al., (1997). As discussed in Chapter 6, the present
study represents a significant contribution to the field. It provides a comprehensive
understanding of water and solute movement dynamics in MSRP soils, which is crucial
for adequate soil and water management in rice cultivation. This study is the first
numerical approach to addressing the theoretical gaps identified by previous studies, and

its findings are expected to guide and inspire future research in this area.

Current tools to improve prediction and parameter calibration for better forecasting
variables, such as ECe and shortwave radiation, were studied using the latter for ET,
prediction. Firstly, machine learning algorithms worked exceptionally well for predicting
EC. using soil texture variables and satellite indices. It is essential to highlight that
algorithms such as Random Forest were far more effective than deep learning techniques,
such as convolutional neural networks. On the one hand, this aligns with other studies on
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salinity (e.g., Kaplan et al., 2023; Yang et al., 2023; Zhao et al., 2023). On the other hand,
numerical solutions were essential for calibrating the shortwave radiation adjustment
parameter (kgrs) required to predict ET, using temperature data only (Paredes et al., 2018,
2020; Paredes & Pereira, 2019). The L-BFGS-B algorithm (Byrd et al., 1995) was
modeled and calibrated using the RMSE as the adjustment parameter. This approach
minimized error, allowing for precise calibration of the krs parameter for each location or

sites cluster.

Rainfall variation affects rice growth as it can result in poor dilution of salts in the plots.
Field observations and continuous monitoring revealed that salts do not have an active
outlet through plot drainage, as few sites can drain water, and no drainage systems are
designed explicitly for this purpose. While northern and southern Balanta regions (e.g.,
Enchugal village in Oio and Cafine-Cafale villages in Tombali) implement drainage to
plow the soil, this practice is rare in the northern region of S. Domingos, among the Felupe
and Baiote (e.g., Elalab and Djobel villages). This discrepancy is primarily due to each
area's varying amounts of rainfall. Typically, farmers close all possible outlets of the

bunds, increase their height, and aim to capture as much rainwater as possible.

However, this management practice does not effectively remove excess salts from the
system. In contrast, regions with high salt concentrations (e.g., Cafine — Cafal, and
Enchugal) employ drainage systems to flush out excess salts. (Fayrap & Kog, 2012; Xiao
Pang et al., 2010), allowing for more efficient salinity management (Minhas et al., 2020;
Ramos et al., 2023, 2024). MSRP operates under a completely different system, where
such drainage practices are not applied in all cases. For example, in sites like Elalab,
farmers prefer to plow with water, which increases the force required for plowing, rather

than flushing freshwater. As a result, the lack of an effective drainage system in the plots
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of many drought-prone regions leads to productivity relying solely on leaching and salt
dissolution.

Maps were generated at the medium scale of the plot level to identify hypersalinity within
the MSRP. However, this study also identified significant small-scale variations within
the system. Chapter 3 determined, through 3D models, the heterogeneity found in the
plots. This highlights that salt accumulation occurs heterogeneously among the plots and
in the case of large ones, this variation can affect rice production at a plot level. This
means that farmers struggle to control water levels inside them, which can involve the

reduction of plot size as observed in the case study in Elalab.

7.3. Study limitations and implications for future research in MSRP

This study was hampered by lack of prior research on rice growth and site
characterization. This hindered the development of the baseline information essential for
creating numerical models and simulations. For example, historical climate data for the
regions under study was scarce and knowledge about the current rice varieties and their

phenological development was limited.

The availability of laboratories and research equipment in the country was also limited.
This delayed the analysis of soil physicochemical characteristics, as well as extending the
time required to conduct the studies. This restricted the direct analysis of ECe, and only
data for ECi:s and ECi.s, could be generated as these were more easily measured in the
field and the country’s laboratories. However, the conversion of ECi:5 and EC1.25 to ECe
present a problem with formulas calibrated by Sonmez et al. (2008). These formulas were
designed for saline soils, not hypersaline soils, as presented in this study. This gap could

be addressed by future research aimed at developing calibrated formulas for hypersaline
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soils could address this gap, allowing for the transformation of EC from various solutions

to EC..

Local rice varieties remain poorly characterized, requiring further research to determine
growth aspects and salinity tolerance. Specifically, the salinity-tolerant varieties in MSRP
have not yet been studied to assess their ECe threshold. Chapter 6 explores an approach
to observing tolerance levels without affecting rice production. This knowledge gap

should be further investigated in future research in the country.

This study is limited to specific case studies within the country, focusing on rice fields
from two villages in the south (Cafine and Cafal), one in the central region (Enchugal),
and two in the north (Elalab and Djobel). Due to budget constraints and the considerable
time required for analysis, only three rice fields were thoroughly examined for their
physicochemical characteristics and spatial distribution. While this information
approximates the behavior of salt concentration on rice fields in each region, it is essential
to note that some sites within these regions may exhibit different characteristics than those
observed in this study. Therefore, future research should consider expanding the number

of case study sites for a more comprehensive understanding.
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Conclusions and future research

It was concluded that the physicochemical properties of the rice field soils are highly
variable, with significant differences observed between associated mangrove soils and
tidal mangrove soils. Most of the soils were classified as Inceptisols with Vertic
characteristics. Various deposits of saltwater river sediments were identified, which
influence the porosity of each soil horizon, and thereby affect the amount of water stored
in the soil. However, this water is not fully available to the plants due to hypersalinity,
which negatively impacts rice production, particularly in years with low precipitation, an

early end to the rainy season, and/or prolonged dry spells.

This study demonstrated that farmers have extensive knowledge of salt management in
different plots. Simulations showed that rice transplanting was synchronized with the salt
dilution in the plot, proving that farmers store sufficient water to complete the rice growth
cycle. However, farmers face significant challenges in dry years because it is difficult to
predict whether a certain year will be rainy or dry. Therefore, it is essential to use all
harvested water efficiently, as observed in the northern regions where plots are smaller

and more homogeneous.

The plots are predominantly saline and hypersaline, and water harvesting is the primary
method for desalinization. In several village in the southern and central regions, farmers
leach excess salts from the soil, but this practice is only possible in areas where plots are
equipped with drainage systems. However, such drainage designs are not feasible for all
farmers, as many rice fields are designed specifically for rainwater harvesting. Therefore,
the greater the capacity of water harvesting system, the lower the risk of production losses

due to salinization.
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Allowing brackish water into the rice fields will depend on the salt concentration of the
river and the timing of the practice. Solute and water movement simulations, determined
that the groundwater is highly saline, and the initial condition at a depth of 0.50 m would
negatively affect rice production. If the initial water level was more significant than 1.50
m in depth, the salinity of the groundwater did not affected the crop. Therefore, if this
practice is carried out, the groundwater level must be below 1.50 m in May. This means
that if brackish water is allowed in, it should be done before March. This practice could
be implemented in the Oio region or in the south of the country. However, it is not
recommended in the northern region. Further research is needed in this area particularly

in the Oio region, where freshwater availability is higher than in other parts of the country.

Sustainable rice cultivation in MSRP of GB depends on adapting farming practices to
biophysical conditions and addressing soil salinity challenges under climate change. This
study emphasizes the critical role of Na* and Mg?" in soil salinity. It demonstrates that
machine learning algorithms, such as Random Forest, can effectively map the spatial
distribution of salinity, offering valuable insights for identifying hypersaline areas. Such
precision is essential for developing targeted interventions, including water management
strategies and drainage systems, to optimize rice cultivation and mitigate soil salinization.
Future research should focus on long-term monitoring, enhancing the understanding of
cation interactions in soil salinity, and validating the model across diverse environments.
This approach will improve agricultural productivity and resilience, aligning with global

sustainability goals.

Furthermore, effective water management, including optimizing groundwater levels,
drainage structures, and salt-tolerant rice varieties, is essential for sustaining productivity
under variable rainfall conditions. The simulations conducted using the HYDRUS-1D

model and machine learning techniques provide valuable tools for predicting salinity
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patterns in regions of Guinea-Bissau. Adjusting global models with more data from
tropical countries, especially those with high rainfall and climatic variability, is essential.
Expanding data collection and refining these models for tropical climates will strengthen
agricultural resilience and food security in West Africa, offering a solid framework for

sustainable rice cultivation.

Some questions remain for future investigation, including: What specific strategies can
be employed to effectively mitigate the risks associated with dike breaches in the
Mangrove Swamp Rice Production (MSRP) system? How can the findings of this study
be applied to rice cultivation in other coastal regions with similar environmental
conditions outside Guinea-Bissau? Additionally, what further research is needed to
comprehensively understand the long-term impacts of soil salinity on the growth and
yield of different rice varieties within the MSRP system? Addressing these questions will
be crucial for advancing sustainable rice cultivation practices and ensuring food security

in vulnerable regions.

This thesis contributes advancing scientific knowledge on salt dynamics in MSRP.
Through a multidisciplinary approach, it provides empirical and visual evidence, as well
as a biophysical characterization of the agroecosystem, integrating local farmers'
knowledge in the country. The study identified Na® and Mg** as the primary cations
responsible for soil salinization in MSRP fields, along with the presence of hypersaline
zones within rice paddies. Machine learning techniques, such as Random Forest, were
calibrated and applied to map these saline areas with high precision. Likewise, numerical
methods, including L-BFGS-B, were employed to optimize cluster-focused predictive
multi-linear regression equations for estimating Kis values. Another relevant contribution
was the estimation of reference evapotranspiration (ET,) under data-scarce conditions,

with particular applicability to regions between 0° and 20°N latitude in West Aftica,
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which experience high climate variability and remain understudied. Finally, this thesis
characterized for the first time in the context of GB the "salt-free period" proposed by
Guei et al. (1997), showing that this period is dynamic and strongly influenced by rainfall

patterns and groundwater depth.
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