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Resumo  

Esta tese, desenvolvida no âmbito do projeto europeu “Mangroves, Mangrove Rice, and 

Mangrove People”, visou a caracterização do cultivo de arroz nos ecossistemas de mangal 

da Guiné-Bissau, onde a segurança alimentar depende de sistemas agrícolas muito 

sensíveis à variabilidade climática e às condições de salinidade dos solos. O objetivo 

principal foi quantificar o balanço hídrico-salino nesses sistemas de produção de arroz, 

visando melhorar as práticas de gestão do solo, da água e da cultura. Para tal, aplicaram-

se metodologias interdisciplinares, incluindo ensaios de campo, entrevistas sobre 

conhecimentos locais, amostragem e análise de solos, caracterização biofísica, modelação 

geoespacial, utilização de índices de vegetação, técnicas de aprendizagem automática, 

estimativas da evapotranspiração de referência (ETo) em condições de escassez de dados, 

dados meteorológicos usando, observações ou de reanálise (AgERA5, MERRA-2), e 

simulações das dinâmicas hídrico-salinas com HYDRUS-1D. Os resultados revelaram 

maior eficiência na captação de água da chuva no norte (16%) em comparação com o sul 

(15%), bem como condições ótimas de plasticidade do solo para mobilização em Elalab 

(18,6%) e Cafine-Cafal (35,5%). As zonas salinas foram mapeadas com um conjunto de 

índices incluindo o normalized difference salinity index (RNDSI), o normalized salinity 

index (NDSI), normalized difference water index (NDWI), e o índice de textura (Limo), 

com o modelo Random Forest a apresentar a maior precisão preditiva (RMSE = 25,49 dS 

m-1). A aproximação simplificada baseada nos dados de temperatura para estimar a ETo 

demonstrou maior precisão (RMSE < 26%), do que a utilização dos dados de reanálise, 

mesmo quando após correção de viés. A modelação hídrico-salina permitiu estimar os 

impactos potenciais a salinidade na produtividade do arroz, que poderão levar a reduções 

de até 60%. Concluiu-se que os fatores-chave no controlo da salinidade no solo são a 

quantidade da precipitação sazonal, a profundidade do nível freático e a qualidade da água 

subterrânea. Este estudo oferece uma base técnica sólida para apoio à produção de arroz 

de mangal, destacando a necessidade de inovação na infraestrutura hídrica e conservação 

ecológica perante as alterações climáticas. 

Palavras-chave: Adaptação climática, salinização do solo, produção sustentável, 

aprendizagem automática, modelação.  
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Abstract 

This thesis, developed within the framework of the European project “Mangroves, 

Mangrove Rice, and Mangrove People,” focused the characterization of the rice 

cultivation in the mangrove ecosystems of Guinea-Bissau, where food security relies on 

agricultural systems highly sensitive to climate variability and hypersaline soil 

conditions. The main objective of the study was to quantify the hydro-saline balances 

within the mangrove rice production system, aiming to improve soil, water, and crop 

management practices. To achieve this, a range of interdisciplinary methodologies were 

applied, including field trials, interviews on indigenous knowledge and technological 

innovation, soil sampling and analysis, biophysical characterization, geospatial modeling, 

the use of vegetation indices, machine learning techniques, estimating reference 

evapotranspiration (ETo) under data-scarce conditions, using observed, meteorological 

variables or reanalysis datasets (AgERA5, MERRA-2), and hydro-saline dynamic 

simulations using HYDRUS-1D. The results revealed more efficient rainwater harvesting 

in the north (16%) compared to the south (15%), along with optimal soil plasticity 

conditions for tillage in Elalab (18.6%) and Cafine-Cafal (35.5%). Saline zones were 

mapped using  normalized difference salinity index (RNDSI), normalized salinity index 

(NDSI), normalized difference water index (NDWI) indices, and Silt texture, with 

Random Forest achieving the highest predictive accuracy (RMSE = 25.49 dS m-1). The 

temperature-based approach for ETo estimation showed higher accuracy (RMSE < 26%) 

than either reanalysis data set even after a bias correction was applied. Hydro-saline 

modeling enabled the estimation of potential impacts on rice yields, which could decline 

by up to 60%. It was concluded that the key factors for soil salinity control included the 

amount and distribution of seasonal rainfall, groundwater depth, and groundwater quality. 

This study provides a solid technical background for more resilient rice production in 

mangrove agroecosystems, highlighting the urgent need for innovation in water 

infrastructure and ecological conservation in the face of climate change. 

Keywords: Climate adaptation, Soil Salinization, Sustainable production, Machine-

Learning, Modeling.   
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Resumen 

Esta tesis, enmarcada en el proyecto europeo "Mangroves, Mangrove Rice, and 

Mangrove People", analizó el balance hídrico-salino del cultivo de arroz en manglares de 

Ginea-Bissau, donde la seguridad alimentaria depende de sistemas agrícolas altamente 

sensibles a la variabilidad climática y a las condiciones de los suelos. El objetivo principal 

fue cuantificar el balance hídrico-salino dentro del sistema de producción de arroz en 

zonas de manglar, con el fin de mejorar las prácticas de manejo del suelo, del agua y del 

cultivo. Para ello, se emplearon diversas metodologías interdisciplinarias, incluyendo 

ensayos en campo, análisis de suelos, caracterización biofísica, modelado geoespacial, 

uso de índices satelitales, técnicas de aprendizaje automático, estimación de la 

evapotranspiración de referencia del cultivo (ETo) en condiciones de escasez de datos, 

uso de reanálisis (AgERA5, MERRA-2) y simulaciones de dinámicas hídrico-salinas 

mediante HYDRUS-1D. Los resultados mostraron una eficiente recolección de agua de 

lluvia en el norte (16 %) en comparación con el sur (15 %), con condiciones de plasticidad 

óptimas de labranza en Elalab (18.6 %) y Cafine-Cafal (35.5 %). Los índices normalized 

difference salinity index (RNDSI), normalized salinity index (NDSI), normalized 

difference water index (NDWI) índices, y el limo permitieron mapear las zonas salinas 

utilizando Random Forest (RMSE = 25.49 dS m-1). La aproximación simplificada con 

base a los datos de temperatura para estimar la ETo, demostró mayor precisión (RMSE < 

26 %) que la utilización de los datos de reanálisis, mismo cuando fue aplicado una 

corrección por sesgo (Bias). El modelado hídrico-salino permitió identificar los posibles 

impactos sobre los rendimientos de los cultivos, los cuales podrían disminuir hasta en un 

60 %. Se concluye que los factores clave en el control de la salinidad del suelo fueron la 

cantidad y distribución de las lluvias estacionales, la profundidad del agua subterránea y 

su calidad. Este estudio proporciona una base técnica sólida para una producción de arroz 

más resiliente en suelos de manglar, destacando la necesidad de innovación en 

infraestructura hídrica frente al cambio climático. 

Palabras clave: Adaptación Climática, Salinización del Suelo, Producción Sostenible, 

Aprendizaje Automático, Modelización.  
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Resumo estendido  

Esta tese, faz parte do projeto "Mangroves, Mangrove Rice, and Mangrove People: 

Sustainably Improving Rice Production Ecosystems and Livelihoods." Este projeto, 

financiado pela União Europeia, especificamente no âmbito do programa de Inovação 

Inteligente para o Development Smart Innovation through Research in Agriculture 

(DeSIRA), visa desenvolver ferramentas e práticas que permitam enfrentar os desafios da 

produção de arroz em sistemas de mangais na Guiné Bissau. 

A produção de arroz nos sistemas de mangal (MSRPS, na sigla em inglês) na Guiné-

Bissau (GB) é essencial para a segurança alimentar e nutricional das populações costeiras 

do país. Este sistema, que é caracterizado pela modificação antropogénica dos solos de 

mangal, e enfrenta graves desafios devido à variabilidade nos padrões e quantidade de 

precipitação e ao aumento da salinidade do solo.  

Estes fatores afetam negativamente a produtividade do arroz, tornando imprescindível 

identificar as principais limitações na gestão da água e do solo. Os solos de mangal no 

país dependem do armazenamento de água doce (proveniente da chuva) para a lavagem 

dos sais do perfil do solo e tornar as terras produtivas. No entanto, a variabilidade de 

precipitação tem vindo a diminuir a adequada lixiviação dos sais, afetando o crescimento 

e produtividade do arroz. A variabilidade climática tem vindo a agravar-se pelas 

mudanças climáticas, pelo que é vital implementar ferramentas e estratégias que visam 

para melhorar a eficiência no uso da água e a gestão do solo, essenciais para a 

sustentabilidade deste sistema agrícola. 

Este estudo abordou os desafios da produção de arroz em mangal através de metodologias 

interdisciplinares que integram a caracterização biofísica do sistema, o diagnóstico da 

salinidade do solo e a melhoria das práticas de gestão da água.  

Como primeira abordagem, foram recolhidas informações meteorológicas e dados sobre 

a produtividade do arroz, obtidos junto dos Ministérios da Agricultura e da Meteorologia 

do país, embora com níveis variáveis de precisão. Os documentos analisados estavam 

redigidos em diversas línguas (inglês, francês, português e espanhol) complementados 

com entrevistas centradas no conhecimento endógeno e na inovação tecnológica, 

conduzidas na língua própria dos agricultores (crioulo). Para além da revisão 

bibliográfica, esta tese integrou investigação empírica, incluindo transeptos realizados 
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para observações das características morfológicas do solo as quais foram realizados com 

agricultores, com descrições in situ das diferentes agroecologias dos arrozais.  

Seguidamente, realizaram-se amostragens sistemáticas de solo em várias zonas de cultivo 

e procedeu-se à caracterização biofísica de MSRPS em três aldeias da Guiné-Bissau, 

utilizadas como estudo de caso. Foram realizadas diversas análises, nomeadamente a 

medição da consistência/plasticidade dos solos e dos níveis de salinidade. 

Adicionalmente, recorreram-se a modelos geoespaciais e técnicas de aprendizagem 

automática (Random Forest, Support Vector Machines, and Convolutional Neural 

Networks) para elaborar mapas de salinidade dos solos. Estes modelos permitiram 

identificar áreas hipersalinas, essenciais para melhorar a gestão agrícola e mitigar os 

efeitos da salinização. 

A estimativa das necessidades hídricas das culturas é geralmente realizada utilizando o 

método dos coeficientes culturais da FAO, que consiste na multiplicação da 

evapotranspiração de referência (ETo) por um coeficiente cultural (Kc). O método FAO-

PM para o cálculo da ETo depende de um conjunto de dados meteorológicos, que, em 

países como a Guiné-Bissau, muitas vezes estão indisponíveis, incompletos ou 

apresentam qualidade insuficiente, devido à manutenção inadequada dos equipamentos 

de medição. Esta tese avaliou abordagens alternativas, conforme descrito nas diretrizes 

revistas do FAO56, para estimar a ETo utilizando apenas dados de temperatura. Os 

resultados indicaram que o método Penman-Monteith baseado somente em dados de 

temperatura (PMT) é geralmente preciso, com um RMSE que não excede 26% da média 

diária da ETo. Relativamente à radiação de onda curtao comprimento de onda, a utilização 

da diferença de temperatura como preditor, em combinação com equações de regressão 

linear múltipla focadas em agrupamentos (clusters) para estimar o coeficiente de 

ajustamento da radiação (kRs), produziu resultados precisos. Além disso, os resultados 

destacam que o método PMT apresentou estimativas de ETo mais precisas do que os 

dados  de reanálise provenientes de diferentes fontes (AgERA5 e MERRA2), mesmo após 

terem sido objeto de uma correção de viés. No entanto, na ausência de dados observados 

de temperatura, os dados AgERA5 podem ser utilizados com precaução como fonte 

alternativa, embora seja necessário cautela devido aos erros desvios e incertezas 

associados à estimativa de ETo com este produto de reanálise. Estes resultados apresentam 

uma abordagem prática para melhorar a gestão da água na agricultura em 
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agroecossistemas tropicais da África Ocidental, especialmente em regiões com acesso 

limitado a dados meteorológicos fiáveis. 

A ETo é um dos dados de entrada do modelo de fluxos HYDRUS-1D o qual foi usado 

para simular a dinâmica da salinidade e o balanço hídrico do solo, considerando múltiplos 

cenários de chuva, a profundidade do nível freático e salinidade de solo, o que ajudou a 

prever o impacto na produção do arroz.  

Os resultados mostram que os níveis de salinidade nas zonas de cultivo de arroz na GB 

dependem, em grande medida, da quantidade e distribuição das chuvas sazonais, bem 

como da qualidade e profundidade do lençol freático. As simulações demonstraram que 

as variações na precipitação e nas profundidades do lençol freático são os principais 

fatores que contribuem para a salinização do solo, o que, por sua vez, afeta os rendimentos 

do cultivo de arroz. Por exemplo, registaram-se eficiências de recolha de água da chuva 

de 15% na região sul e 16% na região norte.  

Relativamente aos índices de plasticidade, os valores obtidos foram de 18,6% para Elalab 

e 35,5% para Cafine-Cafal, em humidade gravimétrica, indicando os momentos ideais 

para o início das operações de mobilização do solo. Além disso, a utilização de modelos 

preditivos facilitou a identificação de áreas com elevadas concentrações de salinidade. 

Por exemplo, o modelo Random Forest demonstrou a maior precisão na previsão da 

salinidade (R² = 0,80, dS m⁻¹, RMSE = 25,49 dS m⁻¹, NRMSE = 51 %), com o índice de 

salinidade de diferença normalizada (RNDSI, calculado com red edge), evidenciando a 

sua precisão no mapeamento e previsão de regiões hipersalinas. 

Foram também identificadas estratégias eficazes para contrariar os efeitos da salinidade 

nos MSRPS, incluindo a melhoria da gestão de diques e estruturas de drenagem para 

evitar a entrada de água salgada durante as épocas de produção de arroz, o uso de 

variedades de arroz mais tolerantes à salinidade nas zonas mais afetadas, e a adoção de 

variedades de ciclo longo em áreas com melhores condições hídricas.  

O sistema de produção de arroz nos sistemas de mangal no país é altamente dinâmico e 

complexo, influenciado por vários fatores, incluindo a salinidade do solo, a variabilidade 

climática e a falta de infraestrutura adequada para a medição e gestão da água. Os 

resultados obtidos nestas investigações sublinham a importância de implementar 

tecnologias de diagnóstico de solos e modelos preditivos para otimizar a gestão hídrica e 
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a eficiência no uso dos recursos naturais. A adoção destas ferramentas permitirá aos 

agricultores da GB uma primeira abordagem para mitigar os efeitos negativos da 

salinização no crescimento do arroz, garantindo uma produção de arroz mais sustentável 

e resiliente face aos impactos das variações nas chuvas, decorrentes das alterações 

climáticas. É crucial continuar a explorar inovações na infraestrutura de gestão da água e 

promover a conservação dos mangais, o que contribuirá para a estabilidade ecológica e 

produtiva do sistema. 

No entanto, persistem desafios importantes. As pressões sociais e económicas levam 

muitas comunidades a expandir as áreas de cultivo para zonas sensíveis, agravando a 

degradação ambiental e aumentando o risco de falhas produtivas (caso das bolanhas 

novas). A ausência de mecanismos de compensação pelo governo de GB que sejam 

adequados para estas populações vulneráveis dificulta a conservação dos serviços 

ecossistémicos. Além disso, os projetos de desenvolvimento frequentemente carecem de 

alinhamento com as necessidades reais dos agricultores, resultando em fraca eficácia e 

pouca sustentabilidade porque trabalham com informações desenvolvidas externas ao 

país. A escassez de programas de restauração de campos salinizados ou abandonados 

também compromete a resiliência do sistema. Em sínteses, esta tese faz uma aproximação 

multidisciplinar donde oferece uma orientação sólida para melhorar a produtividade do 

sistema de arroz em mangal e apoiar as comunidades costeiras na adaptação às condições 

climáticas em mudança. 
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1. Introduction 

1.1.  Context 

 This thesis was conducted within the framework of the DeSIRA project, a major 

initiative aimed at improving the sustainably of rice production, preserving mangrove 

ecosystems, and enhancing the livelihoods of local communities in Guinea-Bissau. 

Funded by the EU DeSIRA program, a key instrument supporting agricultural research 

for development (R4D) in the agricultural innovation, the project holds relevance in 

Guinea-Bissau, where rice production plays a vital role in food security and rural 

development. The program's financial and institutional support was essential in enabling 

a research agenda that adopted a problem-solving and participatory approaches, and 

action-research methodologies. 

 The PhD research design was developed over several months of immersive 

fieldwork, during which time the researcher lived and worked alongside farmers in their 

fields. This close engagement enables an understanding of, and response to, the daily 

challenges they face in mangrove swamp rice cultivation, a cropping system that is facing 

major salinity issues, exacerbated by climate change and social transformations that 

reduce labor availability.   

Guinea-Bissau (GB), a small country in West Africa, relies heavily on rice 

production to ensure the food security, feed its population and balance the economy. 

There are three main rice production systems in the country: Mangrove Swamp Rice 

(MSR), Upland (slash-and-burn), and inland valley (lowland freshwater swamp). 

Additionally, a small area is cultivated under irrigated conditions (Ministry of Natural 

Resources and Environment, 2006). Rice is the staple food for most of the population’, 
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with an annual per capita consumption estimated ranging from 91 kg to 136.9 kg 

(Balasubramanian et al., 2007; Fofana et al., 2014).  

Mangrove swamp rice is a distinctive rainfed cropping system that relies 

exclusively on rainfall both to meet crop water requirements and to leach salts from the 

rootzone (Écoutin et al., 1999; Espírito-Santo, 1949; Schwarz, 1993; Temudo, 2011). It 

originates from the slashing of mangrove trees and the construction of dykes to create 

plots (e.g., Temudo & Cabral, 2017). Thus, it represents the primary driver of mangrove 

deforestation in Guinea-Bissau (Lourenço et al., 2009; Temudo & Cabral, 2017). Among 

the West African countries where mangrove swamp rice cultivation is practiced 

(approximately 200 000 ha), Guinea-Bissau has the largest area occupied (approximately 

102 100 ha) by this cropping system (Adefurin & Zwart, 2016; Cormier-Salem, 1999; 

Temudo, 2011).  

This unique agri-fish-livestock farming system relies on the ability to mobilize 

specialized knowledge, including the construction and maintenance of dikes and dams, 

water management, controlling of soil fertility and toxicity, selecting appropriate rice 

varieties, and the availability of substantial labor at key moments in the agricultural cycle. 

Labor-intensive tasks include clearing the mangrove, constructing dikes and canals, 

desalinating soil, and preparing it for sowing the rise using a long wooden plow tipped 

with an iron edge (Temudo, 2011; Van Ghent & Ukkerman, 1993). 

 This cropping system requires no additional inputs beyond the use of appropriate 

seeds. However, in some sites pesticides are occasionally applied. Fertilization and weed 

control are assured through plowing, by cattle roaming while pasturing the rice stubble, 

as most mangrove swamp rice farmers are also herders, and, until recently, through the 

regular tidal flooding of the lower fields with brackish sea water during the dry season. 
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However, this sustainable balance has been disrupted by climate change, which has 

compromised the natural flooding regime. This has resulted in an increased toxicity of 

acid-sulfate soils, which are transformed under aerobic soil conditions. Proper water and 

soil management has thus become critical to maintaining the sustainability of rice 

production (Fofana et al., 2014; Mendes & Fragoso, 2023), high concentration of soluble 

salts in the soil solution directly affects plant growth and productivity 

(https://www.youtube.com/shorts/UH4SErYaY_U).  

1.2. Salinity effect in soil and rice yield 

High soil salinity typically leads to osmotic stress in plants, which hampers water 

uptake, increases ion toxicity, and causes imbalances in the accumulation of cations in 

the plant. As soil salinity reduces the available water for plants, more energy and 

assimilates are required to sustain water and nutrients uptake. In response to water stress, 

plants often close their stomata to limit transpiration, which in turn reduces CO2 

exchanges and photosynthetic activity (Agurla et al., 2018; Bazrafshan et al., 2020). 

Furthermore, evapotranspiration exacerbates this problem by drawing cations from 

deeper to upper layers near the rhizosphere, intensifying salinity. 

The cations K+, Mg+, Ca2+, and Na+ are the main nutrients involved in the osmotic 

effect in soil and plant but the problem begins when monocations like Na+ increase the 

concentration in soils (Kronzucker et al., 2013; Sparks, 2003a). In clay particles, it can 

interchange space with essential nutrients by plants (K+, Mg+2, Ca+2, Zn+2, and others) 

between the negative clay charge and soil solution, in other words, clay particles could 

be filled by Na+ and the other nutrient pass to the soil solution (Sparks, 2003b). It 

increases the possibility of losses by leaching and nutrient deposition to a deep soil 

horizon. Then, the combined effect of high temperature, low relative humidity, salt 

https://www.youtube.com/shorts/UH4SErYaY_U
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presence, and crop transpiration increases the water requirement in the field. Likewise, 

external cation such as Na+ in high concentration may perhaps increase antagonism with 

K+, Mg+, Ca+, Zn+, and this effect adds to another nutritional problem in crops.  Therefore, 

plants spend energy on water uptake for physiological function, and the mass flow could 

accumulate toxicity ions in intercellular space, increase the nutriment competition, create 

plant toxicity, and reduce yield. In synthesis, it causes nutrients deficiency in crops, soil 

structure loss, and water availability reduction in salinity soil.   

1.3. Water and modeling 

Transient-state models have proven to be a valuable tool for simulating the dynamic 

interactions of water and salts in the soil. These models account for temporal and spatial 

variability, allowing for the assessment of salt accumulation processes over time, and 

understanding and managing salinization in vulnerable agricultural systems (Ragab, 

2002; Šimůnek et al., 2016; van Dam et al., 2008). Several models are included in this 

group such as Hydrus -1D, - 2D - 3D, Drainmod, RZWQM2, RZWQM2, SWAT, 

SWATRE, Modflow and SWAP (Anugrah et al., 2020; Dokoohaki et al., 2016; 

Middleton et al., 1992; Shelia et al., 2018; Singh, 2021; Van de Craats et al., 2020). 

Simpler models, such as steady-state approaches, can also be used. However, they present 

limitations, as they assume minimal variation in salt concentrations over time and space 

within a field. This assumption can lead to inaccuracies in soil water balance calculations, 

particularly in dynamic environments like coastal rice systems where salinity levels 

fluctuate significantly (Corwin, 2021; Letey and Feng, 2007).  

On the other hand, there are simulation models used to assess the impacts of salinity 

and water stress on crop yield (e.g. SIMDualKc model, (Rosa et al., 2016)). Several 

studies have employed mechanistic models capable of estimating biomass and crop 
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yields, which also serve as valuable tools for evaluating irrigation strategies and crop 

management practices. These models are very demanding in terms of parameterization 

and data, particularly on soil hydraulic properties, crop and nutrients data. Several models 

are included in this group such as SALTMOD WOFOST and AquaCrop.  

1.4. Agricultural Resilience to Salinization and Migration 

Climate variability exacerbated by clime change poses an increasing threat to the 

sustainability of mangrove swamp rice (MSR) cultivation. Rising sea levels and 

intensified tidal surges cause seawater intrusion, leading to an increase of soil salinization 

and acidification, which reduces rice yields. Altered rainfall patterns, characterized by 

shorter, more intense rainy seasons, disrupt traditional water management, exacerbating 

soil degradation. Labor shortages due to youth migration hinder the maintenance of 

protective dikes, further compromising cultivation. Mangrove degradation, often driven 

by economic pressures, reduces natural coastal protection and increases vulnerability to 

erosion and storm surges. These combined factors threaten food security and the 

livelihoods of coastal communities that depend on MSR. Climate change, therefore, poses 

a critical threat to MSR sustainability in West Africa, particularly in Guinea-Bissau. 

Further research on water and soil management in mangrove swamp rice 

production, MSRP, is essential to enhance the resilience of this traditional farming system 

and to provide more effective support for local farmers. Strengthening scientific 

knowledge in this domain does not only contribute to mitigating the impacts of climate 

change but also help safeguard food security and the sustainable use of natural resources 

in Guinea-Bissau’s coastal regions. 

 



22 

 

2. Research questions 

 

 This thesis investigates the physicochemical characteristics of soils, water and 

land management, and rice crop development through case studies conducted in two 

villages located in the northern and southern regions of Guinea-Bissau. The primary 

objective is to enhance rice production by improving efficient water use under the specific 

constraints of mangrove swamp rice systems. The research was carried out in real-world 

agronomic context ─ farmers’ fields ─ and was guided by the following key research 

questions:  

✓ What are the physicochemical properties of soil and the prevailing water conditions 

in mangrove swamp rice fields in Guinea-Bissau? 

 

✓ What is the current knowledge regarding rice sowing in mangrove environments, 

particularly in relation to climate variability, soil toxicity, and crop development? 

 

✓ How much water in needed to prevent yield loss due to salinity stress, and what 

strategies can be adopted to rehabilitate soils that are currently unproductive or 

showing reduced productivity?  

 

✓ Under which conditions can brackish water be allowed into the fields during the 

dry and/or the rainy season without jeopardizing crop yields due to increased soil 

salinity? 

 

 



23 

 

To address these questions, the study began with a detailed characterization of the 

farmers’ knowledge and local practices in the selected villages. Building on this 

understanding, several models of salt and water transport in the soil were calibrated and 

validated. The resulting insights were then used to design improved sowing strategies, 

water management, and agronomic practices tailored to the local context. 
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3. General and specific aims 

 

The main objective of this thesis was to quantify the hydro-saline balances within 

the mangrove swamp rice production system, with the aim of improving land, water and 

crop management practices in Guinea-Bissau. By understanding of the dynamics of water 

and salt in this traditional cropping system, the findings of this research also provide 

practical recommendations for optimizing land, water, and crop production management 

in Guinea-Bissau. 

The specific aims of this thesis were as follows: 

1) To develop a conceptual framework for understanding the constraints imposed by 

the hydro-saline balance within the MSR production system (MSRPS); 

2) To contribute to the biophysical characterization of the MSRPS in both the 

northern and southern regions of Guinea-Bissau, with a focus on improving the 

understanding of the soil–water–salinity interactions for more effective plots 

management; 

3) To characterize soil chemical composition, and develop a predictive model for 

assessing spatial distribution, and propose targeted recommendations for soil 

salinity management in MSR; 

4) To develop tools for estimating the climate demand conditions, i.e. the reference 

crop evapotranspiration (ETo) using the FAO Penman-Monteith equation, using 
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exclusively temperature data and reanalysis datasets, thereby enhancing water 

management under data-scarce conditions; 

5) To calibrate and validate the HYDRUS-1D model for simulating soil-water 

dynamics and salt transport in both tidal plots (lower areas near the mangroves) 

and associated upland mangrove plots (higher areas along the catena); 

6)  To compute the soil-water balance and evaluate the impact of soil-water 

management on rice yields at each study site; 

7) To evaluate the effects of changing groundwater dynamics and rainfall variability 

on rice production. 
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4. Thesis framework  

This dissertation is structured around five scientific articles, developed in a 

chronological sequence to progressively gather the data required to address each research 

objective. In other words, the findings and insights from each article informed and 

supported the development of the subsequent one, creating a coherent and cumulative 

research trajectory. The research involved a combination of field and analytical 

methodologies, including field reconnaissance, semi-structured interviews with farmers, 

soil sampling and profile characterization, laboratory analysis of soil physical and 

hydraulic properties, continuous monitoring of in-field sensors, rice growth observations, 

weather monitoring, remote sensing, and data analysis. A comprehensive literature 

review was also conducted, including books, national databases, peer-reviewed scientific 

articles, academic thesis, and meta-analyses from reputable sources such as the World 

Bank, the Food and Agriculture Organization of the United Nations (FAO), and official 

data from the Government of Guinea-Bissau (GB), among others. This provided a 

description of the baseline knowledge on the research topics to be addressed throughout 

the thesis. 

Soil samples and plant samples were collected throughout the three rice seasons. 

These were analyzed and processed in three different laboratories: the Soil Laboratory of 

the Agriculture Department of Guinea-Bissau, the Soil Physics and Hydrology 

Laboratory at Wageningen University, and the Soil and Foliar Laboratory at the 

University of Costa Rica. These laboratories were selected based on the availability of 

specialized equipment and the suitability of each facility for carrying out specific 

analyses. The soil laboratory of the Rural Engineering Department of the Ministry of 
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Agriculture in Bissau was used to develop the physical analysis of the collected soil 

samples. In summary, the thesis is structured as follows: 

 

Figure 1.1. Structural framework of the thesis  

Chapter 2, corresponding to the first scientific article, presents a comprehensive 

literature review enriched with data information from institutional databases, interviews 

with farmers, and field surveys. It also included site description along transects and 

detailed fields observations, which enabled the identification of the key challenges related 

to soil salinity in mangrove environments. The article offers an in-depth description of 

the different rice production systems found in Guinea-Bissau, with a particular focus on 
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the Mangrove Swamp Rice Production (MSRP) system. The study defines the structural 

and functional characteristics of MSRP and explores the local classification of rice fields 

(Bolanhas in Creole) into plots, highlighting their correlation with high-salinity areas. It 

also provides a technical and visual characterization of the sites, supported by 

photographic documentation of field plots, local rice varieties, and the vernacular 

terminology used by farmers. This first article identifies and synthesizes the key 

constraints limiting agricultural performance and rice productivity in Guinea-Bissau, thus 

laying the groundwork for the subsequent chapters. 

Chapter 3 (second article) focuses on the characterization of plots and bunds, 

assessing the number of plots per unit area, their dimensions, and their influence on water 

retention and soil moisture, with particular attention to the soil plasticity limits. A 

comparative analysis was conducted between two villages, one located in the southern 

region of the GB and the other in the northern region, based on the evaluation of the 

impacts of the rainfall variability and the biophysical characteristics of each site on the 

agricultural practices and land management strategies. The findings in this study highlight 

the need to adapt farming practices to the spatial and temporal distribution of water, 

particularly in terms of the timing of tillage operations. Water management was shown to 

be more efficient in smaller plots, due to the reduced variability in waterlogging depth. 

Finally, to optimize tillage operations and mitigate salinity-related issues, the use of 

gravimetric moisture content and soil consistency mapping is recommended. Additionally 

improving drainage infrastructure, conducting a comprehensive analysis of salt 

composition, developing salinity distribution maps and establishing a hydro-saline 

balance are key strategies for enhancing the sustainability of mangrove swamp rice 

systems. 
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Chapter 4, which corresponds to the third scientific article, examines the chemical 

composition and spatial distribution of salts within the MSRP system at the field level. 

The study was conducted in three case study villages and employed machine learning 

techniques to generate high-resolution soil electrical conductivity maps (ECe) with a high 

degree of accuracy. These maps allowed for the identification of hypersaline zones and 

the assessment of salinity patterns in relation to land use and water management practices. 

The article underscores the importance of understanding the interplay between 

agricultural practices, water management, and the role of sodium in shaping soil salinity 

and rice cultivation and productivity within the MSRP. It proposes targeted interventions 

to enhance water distribution infrastructure and restore mangrove forests in currently 

unproductive areas. It validates the findings from the first and second articles by 

reinforcing the link between soil physicochemical properties and spatial salinity patterns. 

Moreover, the study highlights the need for long-term monitoring to gain a deeper 

understanding of water and salt dynamics in the soil to support the development of 

sustainable and resilient rice production systems in mangrove environments. 

Chapter 5, corresponding to the fourth scientific article, focuses on the estimation 

of reference crop evapotranspiration (ETo) within the MSRP. ETo corresponds to climatic 

demand conditions and is essential for estimating crop water use (ETc) when the FAO 

approach is used. It is therefore a mandatory input for many tools, such as soil water 

balance and flux models such as HYDRUS-1D. This article provides a baseline estimate 

that serves as a foundation for calculating crop evapotranspiration in the subsequent 

article. The study explores alternative methods for estimating ETo using only temperature 

data. The analysis includes a comparison of reanalysis datasets, namely AgERA5 from 

the Copernicus project and MERRA-2 from NASA, which differ in spatial resolution and 

temporal consistency. This article delivers a key tool for estimating ETo in Guinea-Bissau 
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and provides a viable alternative for regions with limited meteorological data. Its 

relevance is particularly significant for institutions and stakeholders engaged in 

improving water use efficiency and managing salinity in MSRP. Furthermore, it 

highlights the necessity of refining global models to better suit tropical regions 

characterized by high climatic variability, fostering more efficient and resilient 

agricultural practices. 

Chapter 6, corresponding to the fifth scientific article, presents a hydro-saline 

balance analysis of the MSRP, modelling with the HYDRUS-1D the observed condition 

and potential scenarios based on historical rainfall data. It integrates multiple data 

sources, including the soil physicochemical characterization, biophysical parameters of 

the rice fields, ETo estimates for calculating crop transpiration (ETc), and agronomic 

information on rice varieties and yields. The hydro-saline modelling confirms earlier 

findings regarding salt-free periods essential for rice production (Guei et al., 1997) while 

also identifying critical constraints, particularly the systems dependence on rainfall to 

maintain salinity within tolerable limits. The study proposes several management 

strategies to address soil salinization, such as the identification and use of salt-tolerant 

rice varieties adapted to local conditions, the improvement of drainage infrastructure, and 

the implementation of long-term research programmed to assess salinity tolerance across 

different environmental contexts in Guinea-Bissau. These recommendations aim to 

support the development of sustainable rice production systems in mangrove 

environments, enhancing the resilience of local agriculture in the face of climate 

variability and soil degradation. 

 

 

  



31 

 

Chapter 2 
 

Mangrove swamp rice production system of Guinea 

Bissau: Identification of main constraints 

associated with soil salinity and rainfall variability 
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1. Abstract 

Mangrove swamp rice production (MSRP) stands for rice cultivation in former mangrove 

soils that were anthropogenically modified for food production. They utilize the largest 

possible storage of freshwater to desalinate the soils and make them productive. However, 

temporal variability in rainfall patterns causes loss of efficiency in production, impacting 

crop growth and reducing productivity. To improve MSRP in the country, it is necessary 

to identify the primary constraints associated with salinity, enhancing, and maximizing 

freshwater storage efficiency and water productivity. This study provides a general 

description of the MSRP system in both the northern and southern regions of Guinea-

Bissau aiming at the identification of the main water management limitations. The 

description involves the use of typologies and the identification of zones within the 

paddies with specific characteristics. Furthermore, this review includes an analysis of the 

physicochemical characteristics of soils related to salinity issues, a description of 

agronomic management, rice varieties and the significance of dikes and bunds 

management for improving mangrove swamp rice water management. It shows how the 

MSRPS is characterized by dynamism and complexity, involves a wide range of 

constraints associated with salinity features, cultural influences, and microclimatic 

conditions that are subject to temporal variations.  
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2. Introduction 

Rice (Oryza sativa L. and O. glaberrima) is one of the most important staple foods 

on the Asian, African, and American continents. Global rice production is estimated at 

approximately 540 million tons over the past decade (Food and Agriculture Organization 

of the United Nations., 2018; Kraehmer et al., 2017). 

The rice crop grows primarily in the humid and seasonally dry tropics of the world, 

in most cases with irrigation or freshwater harvesting systems (Mallareddy et al., 2023). 

Flood irrigation is the most widely used irrigation method for rice cultivation worldwide 

(Nie and Peng, 2017). Rice paddy fields are usually permanently flooded, but with the 

aim of reducing water use, several flooding variants have been introduced such as dry 

seeding (Alberto et al., 2014; Diaz et al., 2019), anticipated cut-off, and intermittent water 

application (Oue and Laban, 2020). Due to the increase of water shortage and scarcity 

aerobic rice is being implemented using sprinkler or surface irrigation (Choudhury et al., 

2013; Clerget et al., 2014; Fukai and Mitchell, 2022; Moratiel and Martínez-Cob, 2013).  

Most rice cultivars show remarkable adaptability to thrive in flooded agricultural 

systems (Chauhan et al., 2017), especially in regions characterized by abundant sunlight 

and access to freshwater resources (Mallareddy et al., 2023). Recent plant breeding led to 

the development of modern cultivars adapted to aerobic conditions (Farooq et al., 2023). 

Rice productivity primarily depends on soil fertility, climatic factors, efficient water 

management, agronomic practices, weed control, and the adaptability of rice varieties 

(Bos et al., 2006; Kraehmer et al., 2017; Mallareddy et al., 2023). It has been reported 

that rice productivity can reach values of 10 Mg ha-1 under optimal climatic and 

agronomic conditions and with the support of agrochemical inputs (Chauhan et al., 2017; 

van Oort and Zwart, 2018), but climate change calls for the adoption of agroecological 

pathways especially among smallholders living in marginal regions.  
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In the north-western regions of Africa, upland (slash-and-burn), inland lowland 

swamp and mangrove swamp rice production can be found, all of which are rainfed. It is 

estimated that African rice production systems began 3000 to 2000 years ago (Da Silva, 

1993; W Hawthorne, 2001; Linares, 2002; Penot, 1994). Reports from overseas travelers 

during early colonization (between the years 1400 - 1600) indicated that the population 

from countries such as Senegal, Gambia, Guinea-Bissau, Guinea-Conakry and Sierra 

Leone practiced rice cultivation (Kyle, 2015; Lea, 1993; Teeken et al., 2012). This implies 

that the indigenous population developed technological knowledge for rice production in 

different agroecological conditions, and domesticated wild ancestors (Oryza glaberrima) 

and adapted exogenously introduced rice varieties (O. sativa) for these different 

conditions over many centuries (Linares, 2002). In a context of high agro-ecological and 

cultural diversity, limited labor availability and access to agrochemicals, and a strong 

tradition of self-sufficiency farmers’ rice varieties in West Africa are the result of a long 

breeding process shaped by both ecological and social factors (Nuijten et al., 2013, 2009).  

The yields of farmers’ varieties therefore vary greatly depending on location, year, 

and production system, but as would be expected in the marginal regions where rice is 

grown without external inputs and/or irrigation, they often outperform the so-called high-

yielding or “modern" varieties because they are well adapted to those harsh conditions 

(Teeken et al., 2012; Temudo, 2011). In addition, it was reported that local farmers 

selected rice varieties based on several characteristics besides productivity, including 

fragrance, taste, digestion time, swelling during cooking, ease of harvesting and threshing 

(Teeken and Temudo, 2021; Temudo, 1998).  

Guinea-Bissau (GB) is a small West African country (Figure 1.1) with a population 

of approximately two million people and an area of 37 500 square kilometers (Cooper 

and McConkey, 2005; Röhrig et al., 2021; The Republic of Guinea-Bissau., 2018), having 
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borders with Senegal to the north and Guinea-Conakry to the south. The country has 

extensive mangrove forests that extend across the entire national territory from south to 

north (Cooper and McConkey, 2005), and a total of 88 islands, 20 of which are inhabited 

(Fernandes, 2012; Secretary of State for Environment and Tourism., 2014). In the 

mangrove regions, there are large areas of deforested land that are used for rice 

production. There are also upland areas where rainfed rice, vegetables, fruit trees (namely 

cashews) are grown (Cooper and McConkey, 2005; Dias et al., 2022; The Republic of 

Guinea-Bissau., 2018).  

Rice production is crucial to GB as it forms the basis of the population's diet. There 

are three rice production systems in the country: mangrove swamp rice, upland (slash-

and-burn) rice and lowland swamp rice (rainfed and irrigated) (Ministry of Natural 

Resources and Environment., 2006). The annual per capita, rice consumption is estimated 

to be around 91 - 136.9 kg (Balasubramanian et al., 2007; Fofana et al., 2014; Soullier et 

al., 2020). Nevertheless, daily rice consumption can vary significantly, ranging from 400 

to 700 grams, depending on the location (rural or urban), the time of the year (dry vs. 

rainy season; after harvest vs. hunger period) and the changing eating habits (1 to 3 meals 

per day; inclusion or not in the diet of other cereals and root crops) of different ethnic 

groups (e.g., Balanta, Manjaco, Felupe, Baiote, Pepel versus Fula and Mandinga) and 

households.  
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Figure 2.1. Location of Guinea-Bissau and main regions (Cacheu = A, Oio = B, Bafata 

= C, Quinara = D, Tombali = E) where swamp rice is cropped. 

The mangrove swamp rice production system (MSRPS) is governed by soil salt 

concentration, and in some cases soil acidity, as well as the need for freshwater 

availability for plants. MSRPS belongs to a rainfed wetland rice ecosystem, specifically 

within the sub-ecosystems that are prone to drought and flooding; thus, highly vulnerable 

to rainfall patterns, needing water harvesting in the plots to ensure rice production 

(Andriesse and Fresco, 1991; Balasubramanian et al., 2007). Rice sowing coincides with 

the start of the rainy season, when plots typically have low salt concentrations that favor 

the growth of salt-tolerant rice varieties (Penot, 1994; Temudo, 1998). The decision of 

when to sow is related with the timing that salinity in the plots is low. Decision making 

is based on traditional knowledge without the support of agronomic tools and has become 

more difficult due to increased rainfall variability (distribution and quantity) (Cossa, 

2023). The timing of sowing has become unreliable, especially in the northern regions 

where rainfall is already scarce. To date, no studies on the dynamics of salt and water 
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movement in the soil have been carried out for the MSRPS. The lack of sufficient 

knowledge about rainfall timings and salts dynamics often leads to inadequate crop 

development due to problems such as water shortages, toxicity and acidity, which in some 

cases leads to complete crop loss (Sylla, 1994). Furthermore, MSRP is strongly 

influenced by spring tides, which often lead to saltwater intrusion (Mendes and Fragoso, 

2023), and a partial or total loss of rice production.  

The MSRPS is dynamic and constantly changing due to its vulnerability to rainfall 

variability, that modifies freshwater storage, and forces annual/seasonal adaptation of 

agronomic practices (Andrieu, 2018; Temudo et al., 2020), through the active 

improvisation/innovation of farmers (Martiarena and Temudo, 2023). Consequently, 

appropriate water management is essential to support farmers in reducing the high salinity 

of the soils in the plots on an annual basis. 

Nowadays, temporal and spatial variability of rainfall in the country have become 

increasingly uncertain due to climate change (Dore, 2005; Idris et al., 2022; Nuijten et 

al., 2013). It is well documented that certain regions of the world are more vulnerable to 

climate change, and GB is one such vulnerable country (Martiarena and Temudo, 2023; 

Mendes and Fragoso, 2023; Sousa et al., 2023; van Oort and Zwart, 2018). This 

susceptibility arises from its location in a transition zone between the African tropics and 

the Sahara Desert and its low-lying topography. The country’s agricultural production is 

highly dependent on rainfall, accounting for approximately 90% of its output (Cabral, 

1954a; World Bank Group., 2019). Long-time average annual rainfall ranges from 1200 

to 5000 mm depending on the region; further information will be provided in Section 5.  

The temporal variability of rainfall has a potential influence on the food security of 

the population producing rice for subsistence purposes. Currently, rainfall is concentrated 
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in a shorter period, limiting the production window for MSRP (Mendes and Fragoso, 

2023). Additionally, heavy rainfall over a short period can lead to the destruction of 

MSRP infrastructures (dams and bunds) resulting in the loss of the production and further 

productivity of the rice fields. This issue will be further dealt with in Section 5. Another 

constraint to agricultural production in GB is the lack of necessary infrastructures, such 

as deep wells and dams, to support irrigation (Machado and Serralheiro, 2017; 

Mallareddy et al., 2023; The Republic of Guinea-Bissau., 2018). 

The global aim of the present review article is to provide a conceptual framework 

for understanding the hydric-saline balance constraints of the MSRPS in GB. A 

systematic review could not be carried out due to the small number of available articles 

on the subject, and the need to include old (since the 1950s) and grey literature (e.g. 

books, governmental and project reports) that was not digitally accessible through the 

search engines (Agris, Scopus, ScienceDirect, Springer, Google academic) used in this 

review. The meteorological information and rice yield datasets were accessed from the 

agricultural and meteorological ministries of the country but have variable accuracy. The 

documents used were in various languages (English, French, Portuguese, and Spanish) 

along with the characterization of the sites in the Kriol dialect. Additionally, to the 

literature review, this article also comprised some empirical research, which included 

transects conducted with farmers with on-site descriptions of the paddies’ diverse 

agroecologies, on-farm trials, soil sampling and analysis, biophysical characterization, 

and interviews to farmers about endogenous knowledge and technological innovation. In 

sum, the comprehensive research covers various essential aspects: (a) biophysical 

description of the MSRPS; (b) agronomic management of the MSRPS (c) key constraints, 

such as salinity and rainfall variability, and their impacts on water availability and rice 

yield; and (d) future research needs. 
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3. Rice production in Guinea Bissau 

3.1.  Rice production systems in GB 

Rice in GB is produced in several ecologies with diverse techniques of cultivation. 

The less productive rice system is performed in the uplands on former forests or savanna 

woodlands after slash-and-burn, and less frequently under palm oil groves (Figure 2.2). 

The degree of crop association is quite variable as well as the length of the crop-fallow 

periods (Temudo et al., 2015; Temudo and Santos, 2017). Upland rice is known in GB as 

“N’pam-pam” or “arroz de lugar” (in Kriol language) and is a rainfed production system. 

The sowing of N’pam-pam is usually carried out after the first rains of the year, as the 

production period is limited by rainfall and the soil water availability (Medina, 2008). 

Within the total land area used for rice cultivation (14.7% of the country agricultural 

area), upland rice accounted for 37% only (Ferreira, 1968; The Republic of Guinea-

Bissau., 2018), while MSRP and lowland freshwater production (“Lalas” in Kriol) 

accounted for the remaining 63% (The Republic of Guinea-Bissau., 2018). However, the 

expansion of cash crop cultivation areas, particularly cashew, in recent years has led to a 

drastic reduction in the area occupied by the upland rice system (Temudo et al., 2015). 
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Figure 2.2. Rice production systems (RPS) of Guinea-Bissau.  

The other rice production systems, in contrast, are carried out in the lowlands and 

include two different traditional systems of rice swamp cultivation called in Kriol 

“bolanha doce” (inland freshwater swamp fields) and “bolanha salgada” (mangrove 

swamp fields). The local term “bolanha” refers to the fact that rice is cultivated with a 

permanent depth of water (permanent flooded paddies) until or almost until the end of the 

rice cycle. The freshwater swamps where rice is cultivated are located in inland valleys 

where there is a shallow water table or an impermeable soil layer that allows water storage 

and thus assures fresh-water harvest (Marzouk, 1991). This system is characteristic of 

North-Eastern GB and is essentially performed by women belonging to the Fula and 

Mandinga ethnic groups, who plow with a hoe after burning the grasslands and are not 

used to build dikes (Temudo, 1998). In the other regions of the country (Cacheu, Oio, 

Quínara and Tombali), men from other ethnic groups (such as the Balanta, the Manjaco, 
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the Felupe, the Nalu and the Beafada) can also produce freshwater swamp rice in wet 

savannah grasslands (”lalas” in Kriol) but using a long plow (“radi” in Kriol) with which 

they build dikes, ridges and furrows (Mota, 1954) improving fresh water management. 

Freshwater rice production systems do not present salinity constraints and fields are 

usually far from mangrove forests. This rice production system accounts for 

approximately 10% of the 63% of rice cultivation area in lowlands and saltwater plots 

(The Republic of Guinea-Bissau., 2018). In some areas of the Bafatá region of Eastern 

GB, supplement irrigation is used with water being pumped from the river or using 

gravity-based drainage systems. 

3.2.  MSRP and typologies of fields 

In the coastal areas, near the mangrove forests, we can find the “bolanha salgada” 

rice paddies (MSR fields) (Figure 2.3, 2.4). This system is characterized by the former 

presence of mangrove forests, which over the years have been invaded by the tides in part 

or the whole area of the rice fields. Farmers slash the mangroves, build the main dike to 

prevent saltwater intrusion and create plots of land for freshwater storage by dividing the 

area with bunds, which have been mentioned in previous literature as secondary dikes 

(Linares, 1981). Coastal ethnic groups use these locations due to their high rice 

productivity compared to the uplands and inland swamp valleys. At the top of the weak 

slope that links the villages to the mangroves, there may exist a grassland area (“lala” in 

Kriol) where rainwater accumulates naturally due to the existence of a depression. As 

previously mentioned, farmers can use their MSRPS techniques to create a “bolanha 

doce” (freshwater swamp rice fields) associated with the mangrove rice swamp fields 

which have higher fertility, less weeds, but also salinity issues.
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Figure 2.3. Some characteristics of the “bolanhas” of mangrove swamp rice system (MSRPS) of Guinea-Bissau. 
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The rice fields which result from the destruction of the mangroves and that are 

periodically invaded by the tides are called in the literature tidal mangrove fields (bolanha 

de tarrafe in Kriol), while the upper fields where only the brackish groundwater induces 

soil salinity during the dry season are called associated mangroves (bolanha de metadi in 

Kriol meaning middle swamp fields) (Figure 2.3). This part of the rice fields has generally 

weed species with low salinity tolerance, and a wide diversity of grasses from the Poaceae 

family during the rainy season (Merkohasanaj et al., 2022).  

At the upper end of the associated mangroves’ area are the old swamp fields 

(“bolanha belhu”); these can be abandoned due to low fertility or be cultivated with short 

cycle upland rice varieties for the hungry season when there is land scarcity (namely in 

Oio among the Balanta ethnic group). Farmers frequently abandon these plots because 

their productivity is very low, and they do not provide sufficient returns on labor 

investments. The creation of new plots is triggered by decreasing fertility and, in the long-

term, to the occurrence of a desertification process (i.e. degraded land resources) 

(Andreetta et al., 2016). Evidence of desertification problems has long been observed in 

the Casamance region of Senegal (Linares, 1981), which borders the GB’s Cacheu region 

(Figure 2.1), where areas of low fertility and high salinity predominate. This highlights 

an inherent sustainability problem as producers fail to replenish nutrients depleted by crop 

growth through the incorporation of weeds and rice stubs during plowing. As farmers 

strive to sustainably meet their families' rice self-sufficiency production needs, they are 

compelled to create new plots where they can achieve higher rice yields. Then, within 

each category, farmers from the northern, central, and southern regions divide the plots 

based on specific characteristics that increase their fertility and rice yields.  
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A possible cause of desertification in the mangrove swamp rice abandoned fields 

(“bolanha behlu”), is sodicity (Na+ accumulation) and loss of soil organic carbon 

concentration (Andreetta et al., 2016). Some authors have suggested that the osmotic 

effect observed in plants is due to a combination of salinity, iron toxicity, and soil 

acidification in hydromorphic soils of GB (Ministry of Natural Resources and 

Environment., 2006; Secretary of State for Environment and Tourism., 2014; Sylla, 1994; 

Sylla et al., 1995; The Republic of Guinea-Bissau., 2018; van Oort, 2018). Nevertheless, 

this is not sufficiently proven as the literature does not provide data demonstrating 

concentration of sulfur (S) and Iron (Fe) in the first horizon of the plots’ soil. Some studies 

conducted specifically in mangrove soils indicate the presence of acidity caused by 

sulfuric acids, but this information refers specifically to soils previously covered by 

mangroves (D’Amico et al., 2023; Naidoo, 2023; Oosterbaan and Vos, 1980; Sylla, 1994; 

van Oort, 2018). On this basis, it is possible that soils with significant concentrations of 

toxicity (such as Na and Fe) and acidity (SO3) occur predominantly in new mangrove 

fields (bolanha novo in Kriol) and to a lesser extent in older fields of the tidal mangrove 

area (bolanha de tarrafe in Kriol). This is due to their proximity to soils still covered with 

mangroves and their status as newly created sites for MSRP.  

The scientific categories of tidal mangrove’s and associated mangrove’s fields are 

linked to the relative influence of the tides and of the brackish groundwater on rice 

production (Oosterbaan and Vos, 1980; Penot, 1992; Sylla et al., 1995). Likewise, 

Guinea-Bissau farmers categorize tidal mangroves’ fields in different sub-classes based 

on their specific age, function, fertility level (empirically assessed), and location in 

relation to the mangroves and the village (Figure 2.3, 2.4). Although all tidal mangrove 

fields could be called “bolanhas de Tarrafe”, at present farmers only apply this concept 

to the high fertile lower fields near to the main dike and the mangroves where high 
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concentrations of salts can be found. The recently opened tidal fields of “bolanhas de 

Tarrafe” where mangrove roots and stubs can still be found and thus cannot be plowed, 

are called new swamp fields (“bolanha novo” in Kriol). In these plots, there are generally 

no concerns about soil acidity, due to sulfuric acids, in the first soil horizons (D’Amico 

et al., 2023). This is attributed to the extensive oxidation process in the soil profile, which 

leads to the formation of pyrite, resulting in the release of sulfuric acid and H+ through 

the oxidation of Fe+2 (details are provided in Section 4.2).  

Additionally, over time, leaching of anions and cations to deeper soil horizons 

occurs (Sylla et al., 1995; Ukpong, 1995). The new swamp fields (“bolanha novo”) are 

the newest areas where farmers start planting (or sowing directly high salt tolerant rice 

varieties) 3 to 5 years after slashing the mangroves and building a main dike; this period 

is needed for rainfall to leach salts, thus naturally reducing salinity and toxicity caused by 

seawater cations. These are the most fertile locations among all plots of a paddies 

(Merkohasanaj et al., 2022). However, these are the only sites that suffer from acidity 

problems caused by sulfuric acid due to their limited exposure to oxygen and leaching of 

cations and anions (D’Amico et al., 2023). The start of ploughing of the new bolanha also 

depends upon the dominant mangrove species, as roots constituted with physical barriers, 

mainly the ones of Aviccenia germinans and Languncularia sp. that take longer to rotten 

(Cossa, 2023).  

There are two less common sub-categories of tidal mangroves, primarily used 

among Felupe and Baiote ethnic groups in some northern islands of GB (Figure 2.3, 2.4), 

known as “Nhatabas”, and “Ouriques de pisca”. The “Nhatabas” (called “ilhas” by the 

Balanta) are tidal mangrove fields (“bolanhas de Tarrafe”) in terms of the soil 

physicochemical properties, located in remote islands, requiring the use of canoes for the 

transport of both workers and the rice harvest (Temudo and Cabral, 2023). Finally, the 
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fishing dikes (“ouriques de pisca” in Kriol) are ponds surrounded by dikes, reserved 

exclusively for the reproduction and growth of fish (Van der Knaap, 2019) (although they 

might have been former rice plots). Farmers facilitate the entry of saltwater, shrimps, and 

fish into these ponds by opening drainage pipes made from palm trunks (Cooper and 

McConkey, 2005; Oosterbaan and Vos, 1980).  
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Figure 2.4. Plots of mangrove swamp rice production system in mangrove of Elalab, Guinea-Bissau. A) Village (Tabanca), B) fish production 

plot in the Felupe/Baiote system (Orike de pisca), C) Associated mangrove (bolanha doce), D) Tidal mangrove (bolanha salgada), 

E) New mangrove plots (bolanha novo), F) Mangroves (Tarrafe). 
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In some villages there is also an “associated terrace” (cabeça de bolanha in Kriol, 

meaning head of the rice swamp field) covered by wet or dry grassland. In the upland 

savannah woodlands/grasslands surrounding the households, where cattle, pigs and goats 

roam, some farmers sow the rice nurseries at the beginning of the rainy season. Farmers 

can also use the mangrove fields to create nurseries, as in the south of GB, or more seldom 

perform direct sowing as in the southern GB (Balanta ethnic group of the Cafine region 

and the Felupe/Baiote ethnic groups of the Cacheu region). 

3.3.  Areas and yields 

The official international statistics (Food and Agriculture Organization of the 

United Nations, 2023; The World Bank, 2023) show that in the last 60 years, total rice 

production in GB has been on an upward trend (Figure 2.5). However, these statistics are 

based upon rough estimates for the entire country. According to FAO and the World Bank 

estimates (Food and Agriculture Organization of the United Nations, 2023; The World 

Bank, 2023), rice production was lower in the 60s and 70s than in the last decade 

(Koehring, 1980). In the last 10 years, the average total area under rice cultivation in the 

country was 112 564 ha, with an annual average production of 180 749 Mg of rice. This 

is in line with the estimates of the African Union, which currently forecasts an 

approximate production of 182 544 Mg for the period 2010-2020 (African Union., 2023). 

A similar increasing trend can be observed in relation to the rice harvested area (Food and 

Agriculture Organization of the United Nations, 2023; The World Bank, 2023). This 

indicates an active and strong expansion of rice production areas, despite the continuing 

dependence on rice imports (Food and Agriculture Organization of the United Nations, 

2023). This is likely due to a combination of factors, ranging from the active rebuilding 

of mangrove swamp rice fields’ infrastructures after the liberation war (1963-1974) and 
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the expansion of new planting areas with higher soil fertility and water availability 

(Temudo and Cabral, 2017; Vasconcelos et al., 2015).  

 

Figure 2.5. Smoothed conditional means plots of the harvested area (ha) and national 

production (Mg) of rice from 1961 to 2022 (Food and Agriculture Organization 

of the United Nations, 2023). 

The rice yields in GB exhibit considerable temporal and spatial variability, the latter 

depending on the region and the rice production system. Table 2.1 shows the rice yield 

reported in several studies about rice cropped in upland locations and MSRP fields. The 

results show that the MSRPS outperforms the upland rice in all studies, with differences 

ranging from 15% to 60%. These differences indicate that the yield of the diverse rice 

production systems in GB is extremely different, largely due to the strong differences in 

agro-ecological characteristics between upland, inland valleys, and MSRP fields.  
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3.4.  Rice crop species and varieties 

Two species of rice plants have been identified in GB since colonial times, Oryza 

glaberrima and O. sativa. The first is a species native to Africa, where farmers have been 

domesticating and selecting varieties for 2000 and 3000 years (Cormier-Salem, 1999; Da 

Silva, 1993; W Hawthorne, 2001; Linares, 2002). On the contrary, O. sativa is a species 

native to Asia and was introduced by the Portuguese and/or the Arabs during the colonial 

period in the 17th century (Linares, 2002; Teeken et al., 2012). These species have 

significant advantages and disadvantages in terms of their adaptability to the MSRPS 

(Table 2.2). The main reasons for their adoption are their productivity (sensu lato), their 

adaptation to social and cultural factors, and their tolerance to biotic and abiotic factors 

(Kyle, 2015; Temudo, 2011). Over the years, farmers in GB have selected varieties from 

both species with the most suitable organoleptic and agronomic characteristics.  
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Table 2.1. Literature reported rice yields in upland and mangrove swamp system 

(MSRPS). 

Year/System 
Yield ranges (kg ha-1) 

References 
Upland MSRPS 

1947 - 2060 - 3000 (Castro, 1950) 

1948 –- 1620 - 2680 (Castro, 1950) 

1949 - 1040 - 1960 (Castro, 1950) 

1953 300 - 

600 

1800 - 2000 (Ferreira, 1968) 

1968 1098 1832 (Ferreira, 1968) 

1970 600 - 

800 

1000 - 3000 (WALTER Hawthorne, 2001) 

1982 - 1900 (Seidi, 1998) 

1983 - 2700 (Seidi, 1998) 

1986 270 - 

950 

1020 - 3750 (Van Ghent and Ukkerman, 1993) 

1987 - 1305 - 2700 (Rodrigues and Carrapiço, 1990) 

1988 - 1714 - 3033 (Rodrigues and Carrapiço, 1990) 

1990 400 - 

600 

- (Cormier-Salem, 1999) 

1991 300 - 

600 

600 -1500 (Da Silva, 1993) 

1994 - 1960 (Seidi, 1998) 

1995 - 2800 (Adesina and Seidi, 1995) 

1999 500 1500 - 4000 (Cormier-Salem, 1999) 

2001 1000 3000 (Chauhan et al., 2017) 

2008 400 - 

800 

- (Kyle, 2015) 

2008 400 - 

800 

- (Kyle, 2015) 

2010 - 1584 (African Union., 2023) 

2014 - 1700 - 2600 (Secretary of State for Environment and 

Tourism., 2014) 

2015 - 1120 – 2870 (Tesio et al., 2021) 

2017 - 1000 (Chauhan et al., 2017) 

2021 - 1600 (Röhrig et al., 2021) 

2023 - 1180 - 1910 (Cossa, 2023) 

A significant number of rice varieties have been reported in GB over the last 70 

years (Table 2.3). These varieties possess genetic characteristics of the O. sativa and O. 

glaberrima species, and even of inter-specific hybrids (J. Espírito-Santo, 1949). The 

literature reports a total of 54 varieties (both farmers’ varieties and “improved” ones) 

identified in MSRP (Table 2.3) over the last 12 years (Teeken et al., 2012; Temudo, 2011; 
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Tesio et al., 2021). There is a wealth of information that still needs to be thoroughly 

explored to accurately determine whether different names correspond to the same rice 

varieties and the same name can correspond to different varieties. This is a challenge the 

country faces due to its wide diversity of ethnic groups with completely different 

languages, making it difficult to properly identify a variety.  

Table 2.2. Characteristics of Oryza glaberrima and Oryza sativa used for rice production 

system in mangrove reported in West Africa.  

Species History and adaptability Phenotypic 

characteristics 

Genotypic 

characteristics 

Oryza glaberrima 

• Indigenous African rice 

• Wild ancestor O. Brevilugata 

• Domesticated 2000 – 3000 years 

ago 

• Dryland and wetland rice 

cultivation 

• High adaptability in water depth 

fluctuations 

• Some varieties have high salinity 

tolerance 

• Some varieties have high draught 

tolerance 

• Small grain 

• Dark seed color 

• Pear-shaped grains 

• Grain with red, olive to 

black seedcoat 

• Straight panicles 

• Panicles with simple 

branches 

• Short-rounded ligules 

• Wide leaves 

• Seeds scatters easily 

• The grain is brittle 

• Difficult to mill 

• Short and 

medium cycle 

• Tolerance to 

diseases and 

pests 

• Tolerance to iron 

toxicity 

• Tolerance to 

acidity 

• Tolerance to low 

fertility soils 

• Salt or drought 

tolerance 

• Good 

acclimatization. 

Oryza sativa 

• Asiatic origins 

• Two strains (O. japonica, O. 

indica) 

• Introduced early 1600s by 

Portuguese and/or Arabs 

• Dryland and wetland rice 

cultivation 

• Lower tolerance in water depth 

fluctuations 

• Slowly compete with weeds 

• Some varieties have high and low 

salinity tolerance 

• Bigger grains 

• General white seed color 

• Pear shaped grains 

• Panicles are not upright 

• Pointed ligules 

• Panicles bend after 

flowering and have more 

ramifications 

• Short, medium 

and long cycles 

• More susceptible 

to diseases and 

pests 

• Scatter lees seed 

on the ground 

References 
(Adesina and Seidi, 1995; Cormier-Salem, 1999; W Hawthorne, 2001; Linares, 

2002, 1981; Teeken et al., 2012) 



53 

 

The wide diversity of rice varieties in GB (Table 2.3), are continually being selected 

based on farmers’ changing needs over time. The vast majority of farmers do not carry 

out mass selection before harvesting the grain to be used as seed for the next cropping 

season, and farmers permanently access and adopt seeds of new varieties through 

informal channels. Furthermore, natural interspecific hybrids were found in smallholders’ 

fields as a result of spontaneous cross pollination (Nuijten et al., 2009). Varieties are 

usually adopted by farmers based on agroclimatic conditions (soil physico-chemical 

conditions, climate), post-harvest quality and nutritional considerations (Penot, 1995; 

Temudo, 2011, 1998). Various local criteria are used when selecting rice varieties 

including: (1) nutritional quality and post-harvest characteristics (duration of digestion 

time, swelling capacity during cooking, taste, difficulty in threshing, processing 

characteristics (de-husking), time required for a given volume of rice to be fully 

consumed) and; (b) both phenotypic and genotypic traits of the variety (growth cycle, 

yields, salt tolerance, plant height, tillering capacity, flood tolerance, drought tolerance, 

susceptibility to lodging and shedding, susceptibility to pests and diseases) (Temudo, 

2011, 1998). In most villages these two main sets of criteria are used, with the first 

category having more weight than the second. Furthermore, these criteria may vary 

depending on the topographical characteristics of the plots and the cultural practices in 

different villages across the country
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Table 2.3. Rice varieties’ common names reported in the literature for Guinea-Bissau since 1948 to 2023. 

Years 1948 - 1973 1974 - 1990 1991 - 2010 2011 - 2023 

Varieties 

• Adusta 

• Amaura 

• Americano 

• Atanha 

• Atrobrunnea 

• Bandjulô 

• Cuncú béle 

• Cycliana 

• Cristal 

(Angola) 

• Dichroa 

• Dinqueri 

• Elongata 

• Feluge 

• Gambiel 

• Gilanica 

• Iacá 

• Ioncubá 

• Italica 

• Jambaram 

• Jambaram 

branco 

• Landjau 

• Malanotrix 

• Malicoió 

• Ménè 

• Mohóbè 

• Mutica 

• Ruio (Angola) 

• Openê 

• Poupa 

• Santi 

• Selho 

• Senco 

• Sepica 

• Some (Thome) 

• Tanha 

 

• BG 400 SLR 

• BG-380-2 

• BG400-2 

• BG400-SRI 

• Cablack 

• Iaca 

• IR15-19 

• IR2035-120-3 

• Rd15 

• RD15 

• RG380-2 

• ROHIB 15 

• ROHYB 6 

• Rok5 

• WAR1 

• WAR77 

• WAR77-55-2-2 

• WAR-81-2-1-1 

• WAR81-2-12  

• Abulai 

• Aninha 

• Atanham 

• Bandeira 

• Bêháma 

• Bentana 

• Berendugô 

• Bimbirim 

• Cataco 

• Catanha 

• Cáu 

• Caublac 

simples 

• Cablak 

• Caublac xau 

• Iácá pepel 

• Iácá tomáso 

• Iácá pami 

• Lóbsim 

• Mafanhi 

• Malmála 

• Malmom 

(N'conton) 

• Malu-malu  

• Malu-raça 

• Mamussu 

• Murungo 

• N’conto 

• Nhiue 

• Nhoquê 

• N'thanthé 

• N'uérique 

• Péra n'djubi 

• Kissidugo 

• Quissampena/Sampena 

• Rd15 

• Rok5 

• Santi 

• Silá 

• Sili 

• Socubá 

• Some/Thom 

• Spínola 

• Thom-dam 

• Thom-som 

• Thorno 

• Yaca-keba 

• Yacuncola 

• Yaka  

• Alaia 

• Aninha 

• Arica 06 

• Arica 07 

• Atanha 

• Baga-male 

• Bakungabu 

• Balenabu 

• Bamakabu 

• Barnonte 

• Batumpaiabo 

• Brasil 

• Bucar/Buré 

• Cablak/Caubla 

• Cataco 

• Catio 

• Djambaram/Jambaran 

• Djelele 

• Dus-cascas/4 

cascas/Aferenqué 

• Edjur 

• Etelé 

• Iacai Adi 

• Iacai branco 

• Iacai Tomor 

• Iacai vermelho 

• Kataco 

• Loque 

• Malan-dan 

• Malmon 

• Malubrasa 

• Malu-dingo 

• Malu-N’daure 

• Malu-sauho 

• Mamusso 

• N’conto 

• N’conto branco 

• N’conto preto 

• N’dolo-cpoc 

• N’gel 

• Nerica 

• N'thanthé 

• RD15 

• Rok25 

• Rok5 

• Sampena/Quissampena 

• Seli/Sili 

• Thom 

• Yaca 

• Yaca branco 

• Yaca-saw / Xau  
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2001; Penot, 1998, 1992; Temudo, 2011, 

1998) 

(Cossa, 2023; Teeken et al., 2012; Temudo, 

2011; Tesio et al., 2021) 
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The rice varieties may be classified based on the crop cycle duration: short-cycle 

varieties (> 90 days after sowing (das)), medium-cycle varieties (115 – 125 das), and 

long-cycle varieties (>135 das) (Cormier-Salem, 1999; Linares, 2002; Miranda, 1993; 

Penot, 1992; Teeken et al., 2012; Temudo, 2011; Tesio et al., 2021). This depends 

primarily on the rice species as O. glaberrima varieties tend to have a shorter growth 

cycle compared to O. sativa varieties (Adesina and Seidi, 1995; Dossou-Yovo et al., 2022; 

W Hawthorne, 2001). Nevertheless, comprehensive data on phenological stages, the 

temporal intervals between these stages, the quantification of phenological stages based 

on cumulative growing degree-days, and other pertinent factors are still missing. 

Understanding the phenological stages of these rice varieties and growth cycles is crucial 

for developing more precise agronomic recommendations. Therefore, rice varieties in GB 

lack comprehensive life cycle characterization. Particularly because there is limited 

evidence for defined phenological stages and growth durations. 

As shown in the analysis above, rice varieties cultivated in GB have significant 

genetic variability. Therefore, both genetic and agronomic studies are essential to identify 

and fully characterize the local varieties specifically used in the MSRP agroecosystem. 

This information will support adequate agronomic recommendations in times of socio-

environmental changes, particularly in terms of water scarcity and salinity issues.  
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4. Salinity and salt management in the MSRPS in GB 

4.1.  Base concepts 

Soil salinity is an excessive accumulation of soluble salts (K+, Ca2+, Mg2+, Cl− and 

SO4
2–) and/or exchangeable sodium (Na+) in the rhizosphere or root zone (McGeorge, 

1954). Salinity in agricultural waters and soils is ascribed to both hydro-geological and 

anthropogenic mechanisms. Soil salinity problems occur in a variety of climatic 

conditions but are most evident in arid and semi-arid climates where rainfall is insufficient 

to leach accumulated salts in the root zone of crops (Hopmans et al., 2021). 

Secondary salinity became an adjunct of irrigated agriculture since it charted almost 

similar path with the commissioning of several irrigation schemes (Ghassemi 1940- et al., 

1995; Hopmans et al., 2021). Major types of soil salinization include shallow 

groundwater associated salinity, transient dryland salinity, irrigation-induced salinity 

(Hopmans et al., 2021; Rengasamy, 2016), and the intrusion of saltwater from the sea 

(Hopmans et al., 2021).  

High levels of soluble salts in the soil affect its physico-chemical properties, causes 

osmotic changes in soil water, namely increasing the osmotic potential, which leads to 

the reduction of plants water uptake, directly decreasing the plant growth rate, and 

consequently leading to a decrease in crop production (Ayers and Westcot, 1985a; 

Hoffman and Shannon, 2007; Hopmans et al., 2021; Minhas et al., 2020, 2019; 

Rengasamy, 2016; Rhoades et al., 1992). High sodium or low calcium levels in the soil 

or water affects the soil permeability and may cause crusting hazards. This reduces the 

rate of water infiltration into the soil to such an extent that not enough water is able to 

infiltrate and to refill the rootzone, thereby failing to provide the plant adequate water 

supply (Ayers and Westcot, 1985a; Minhas et al., 2020, 2019; Rhoades et al., 1992).  
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In sodic soils clay dispersion occurs when the electrolyte concentration falls below 

the clay flocculation value. Sodium-affected soils, that have low salinity have low 

structural stability, low hydraulic conductivities, and infiltration rates. These poor 

physical properties result in reduced crop yield caused by the combined effect of poor 

aeration and reduced water supply. Low infiltration rates can also lead to severe soil 

erosion particularly under heavy rain conditions (Sparks, 2003a). 

The accumulation of salts in the soil leads to chemical imbalances within the soil 

matrix, subsequently giving rise to nutritional deficiencies in plants (Van de Craats et al., 

2020). When the concentration of salts in the soil solution reaches a critical salinity level, 

called threshold salinity (Maas and Hoffman, 1977), it causes severe water deficits in plants, 

restricts plant growth, and can result in plant death (Machado and Serralheiro, 2017). 

Specific toxicity effects may occur in plants, mainly in woody perennials, in the presence 

of certain levels of chloride, sodium, and boron (Ayers and Westcot, 1985a; Hoffman and 

Shannon, 2007; Hopmans et al., 2021; Rhoades et al., 1992). 

In saline soils, pH and acidity can also adversely affect plant growth. Soil acidity is 

primarily caused by an increase in the concentration of H+ ions (Agegnehu et al., 2021; 

Sparks, 2003a). In tropical soils, the primary cause of acidity is the hydrolysis of Al+3, 

whereas in soils with anoxic conditions and high organic matter content, acidity is directly 

caused by the release of H+ (Agegnehu et al., 2021; Giri et al., 2022). In general, saline 

soils tend to have alkaline pH values (pH > 7), this may lead to issues with nutrient 

solubility in soil solution. However, this condition can change if other chemical 

compounds are present that can significantly reduce the pH, such as sulfates (Sylla, 1994). 

Extremes in soil pH (whether high or low) directly impact nutrients solubility, 

consequently diminishing essential nutrients uptake by plants (Fernández and Hoeft, 
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2021). Both conditions exist in mangrove soils, mainly in soil with good oxygenation and 

active redox changes (Bolanha novo). All these issues impact rice growth and yield.  

The salinity quantification in the soil solution is easily determined by the electrical 

conductivity (EC) measurements evaluated in 1:2 (soil:water extract) or 1:5, and in soil 

saturated paste extract. The soil sodicity is based on the determinations of the 

Exchangeable Sodium Percentage (ESP) or the Sodium Adsorption Ratio (SAR) (Kargas 

et al., 2020; Machado and Serralheiro, 2017).   

Salinity affected soils are classified into saline, alkali and saline alkali based on 

ESP and EC (McGeorge, 1954). Saline soils are those having an EC in saturated paste 

extract above 4 dS m-1 and an ESP < 5% (Kargas et al., 2020; Strawn et al., 2015). Sodic 

soils, present a high concentration of sodium, as indicated by an ESP > 15% and EC < 4 

dS m-1. The saline-sodic soils, which exhibit both high EPS (> 15%) and high EC (> 4 dS 

m-1) (Sparks, 2003b; Strawn et al., 2015). If the system has high sodium concentration 

(ESP > 15%) and low EC (< 4 dS m-1), there is a high probability of soil structure loss 

due to clay particle dispersion (Van de Craats et al., 2020). 

Salinity management strategies usually aim to prevent salts accumulation in the root 

zone to levels that limit root water uptake, controlling salt balances in the soil–water 

system by preventing continuous accumulation in the root zone, and minimizing the 

hazardous effects of salinity on crop transpiration and consequently on crop growth and 

yield. Under saline conditions, irrigation should aim at maintenance of sufficiently high 

soil water potential and cause salt leaching in the soil profile (Maas and Hoffman, 1977; 

Minhas et al., 2020). However, under rainfed conditions, salt leaching occurs through 

precipitation, the timing of which may limit the suitability of the soil for crop production 

and/or sowing timing(Minhas et al., 2020).  
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Nowadays, remote sensing instruments and aerial photography are used to map 

salinity because it is impractical to directly measure root zone EC over large areas. The 

FAO has provided a world map of soil salinization, the GSASmap, derived from a 

harmonized world soil database (FAO., 2021). Unfortunately, this information is not 

available for GB, as no studies have been conducted in the country that could provide 

such information and is therefore a research gap that needs to be closed. 

4.2.  Salinity in the bolanhas of MSRPS 

The impact of salinity represents one of the challenges in MSRP across West Africa. 

Some studies have indicated that drought (33%), iron toxicity (12%), cold (7%) and 

salinity/sodicity (2%) are the most prevalent and significant stresses affecting rice crops 

in Africa (Africa Rice., 2011; Balasubramanian et al., 2007; Dossou-Yovo et al., 2022). 

Plants exhibit a significant adaptive response to cope with water loss by enhancing 

stomatal closure, thereby reducing CO2 exchange, impeding photosynthesis and, thus 

reducing yield (Agurla et al., 2018; Bazrafshan et al., 2020). Furthermore, 

evapotranspiration exacerbates the salinity effect, because water can mobilize cations 

from deeper soil layers into the upper layer near the rhizosphere.  

Abiotic stress caused by salinity inhibits rice growth. The soil where MSR is 

cultivated are alluvial, formed by the deposition of sediments by seawater flows that 

naturally introduce salts into the system (Teixeira, 1962; Ukpong, 1997, 1995). These 

areas are highly saline and support rice growth only during the rainy season when a period 

of lower toxicity occurs (Chauhan et al., 2017). Maximum concentrations in some plots 

in GB were found to be between 195.8 and 5599 cmol(+) Na per kg soil and an electrical 

conductivity (EC) of 53.75 mS cm-1 (D’Amico et al., 2023). During the rainy season, salt 

concentration can drop to levels below 5 mS cm-1, allowing weeds and rice to grow 
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(Écoutin et al., 1999; Penot, 1994). This period represents a strategic phase for farmers, 

to take advantage on these specific moments to grow rice. During the dry season, certain 

plots adjacent to mangroves and saltwater are used for extracting salt, especially intended 

for culinary purposes. 

Due to the specificity of the MSRPS conditions a different classification for soils 

affected by salinity was proposed by (Sylla et al., 1995); the classification is based on EC 

(measured in 1:5 soil water suspension) and on the suitability of the soil for rice 

production as depicted in Figure 2.6. These systems are defined by their status at the end 

of the dry season, particularly at the beginning of the rainy season (Sylla et al., 1995). It 

has been found that rice cultivation can thrive in Class 1 (non-saline) and Class 4 (very 

saline) soils. This can be achieved by using salt-tolerant rice varieties and ensuring 

adequate rainfall to facilitate leaching and reduce soil cation levels.  
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Figure 2.6. Salinity classes according to electrical conductivity (EC) in water suspension 

(1:5) for final dry condition (before the beginning of the rainfall season) based 

on the salinity tolerance of rice. Downward arrow illustrated decrease in class 

as a result of rainfall, salt dilution or leaching. (Adapted from (Sylla et al., 

1995)) 

As previously stated, the MSRP in GB is determined by initial and final conditions 

regarding soil salinity concentrations. Due to the different initial salt concentrations in 

different plots, these conditions are not uniform everywhere (D’Amico et al., 2023; Guei 

et al., 1997), and depend on the amount of retained freshwater, resulting in additional 

dilution of salts as the MSRPS typically lacks proper drainage. Some reports have found 

that in mangrove systems in Nigeria, the spatial distribution of salinity is related to 

nutrient relationships and textural gradients (Ukpong, 1997). The initial rainfall, 

depending on the amount of water, may also favor the leaching of some salts to deeper 

horizons, possibly leading to their accumulation in the groundwater. The assessment of 

the initial salt concentration is performed by farmers when they start planting the rice. 

Due to the lack of appropriate tools farmers use biological (such as the presence of certain 



62 

 

weeds), and physical (such water temperature and the taste of the water) indicators. 

Comparable indicators have been documented in rice production in India (Padhy et al., 

2022). 

The final state of the rainy season has a direct impact on crop yield since salinity 

can influence the critical phenological stages of rice plants. The final phenological stages 

of rice (R5-R7) are crucial for productivity, as stress during this period can directly affect 

the yield (Sylla, 1994; The Republic of Guinea-Bissau., 2018; Thiam et al., 2019; van 

Oort, 2018). This happens every year when the plots revert to their original conditions. 

This typically occurs between two months after the last rainfall. At this time, water 

evaporation and crop transpiration increase the salt concentration in the plot, resulting in 

stress for non-tolerant rice varieties (Chauhan et al., 2017; Marius and Lucas, 1982; 

Wolanski and Cassagne, 2000). Some authors report that salinity is the most limiting 

factor in rice production in GB (Van Ghent and Ukkerman, 1993). For this reason, farmers 

in the northern region of the country strive to store and maintain the maximum amount of 

water in the plots. There are currently no regional studies on water-salt balance, osmotic 

effect on rice plants, and evapotranspiration corresponding to the varieties of MSRP 

found in GB. For this reason, some authors recommend conducting regional studies on 

soil salinity in MSRPS (Sylla et al., 1995; Thiam et al., 2019).  

Only a few studies report on soil water balance and salt movement (Sylla et al., 

1995; Thiam et al., 2019) and only one focuses on GB (Sylla et al., 1995; Thiam et al., 

2019). Therefore, there is a research gap regarding the adequate characterization of the 

MSRPS in terms of the dynamics of salts during both the rice season and the offseason, 

which is essential for establishing an appropriate schedule for the timely commencement 

of rice production in each region/type of field.  
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4.3.  Salinity and water productivity in the MSRPS 

According to the recent review by Minhas et al. (Minhas et al., 2020) the 

relationship between plant growth and heterogeneous salinity in the root-zone is complex. 

Thus, plant growth responds to the weighted-mean salinity of the root-zone, as well as to 

the site-specific response of the roots and their ability to uptake water from the soil. Plants 

expend more energy to extract water from saline soil due to the high affinity of salts for 

water and therefore growth and yield are reduced.  

Several studies have shown that crop yield and transpiration are less sensitive to low 

osmotic potential than to low matric potential (e.g., (Allen et al., 1998)). Under saline 

conditions, many plants can partially compensate for the low osmotic potential of soil water 

by building up higher levels of internal solute. This occurs through the absorption of ions 

from the soil solution and through the synthesis of organic osmolytes. However, the synthesis 

of organic osmolytes requires the expenditure of metabolic energy which will affect plant 

growth by reducing it under saline conditions. Reduced plant growth affects transpiration 

through the reduction of ground cover. 

Aiming at assessing the reduction impacts of both soil and water salinity in crop 

evapotranspiration and yield, empirical crop salt tolerance response functions have been 

developed for several crops, namely rice (Maas and Hoffman, 1977). These functions 

allow defining yield reduction as a function of total soil solution salinity based on EC. 

The derived functions by combining yield-salinity equations (Ayers and Westcot, 1985b) 

with yield-ET equations (Doorenbos and Kassam, 1979). The resulting equation provides 

a first approximation of the reduction in evapotranspiration expected under various 

salinity conditions and has been widely used in field conditions (e.g. (Liu et al., 2022a, 

2022b; Rosa et al., 2016)). Crop yields remain at potential levels until a specific threshold 
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of electrical conductivity of the saturation soil water extract (ECe threshold) is reached (Allen 

et al., 1998; Maas and Hoffman, 1977). Once the average ECe of the root zone exceeds 

this critical threshold, yield is assumed to decrease linearly in proportion to the increase 

in salinity (Allen et al., 1998; Pereira et al., 2007).  

The rate of yield decline with increasing salinity is usually expressed as a slope, b, 

with units of % yield decrease per dS m-1 increase in ECe. This is because not all plants 

respond similarly to salinity, as some crops are better able to make the necessary osmotic 

adjustments that allow them to extract water from a saline soil, or because they may be 

more tolerant to some of the toxic effects of salinity. According to the salt tolerance scale, 

rice is a sensitive plant and therefore does not tolerate high ECe. The ECe (threshold), for rice 

is 3 dS m-1 (Allen et al., 1998; Maas and Hoffman, 1977). As discussed by (Grieve et al., 

2012), this ECe threshold presents errors and further research is needed to reduce the uncertainty, 

particularly when using salt-tolerant varieties. In addition to this piecewise linear function, 

various non-linear models have been proposed to relate crop yield to salinity (Genuchten 

and Hoffman, 1984). Several authors (e.g. (Allen et al., 1998; Pereira et al., 2007)) have 

stated that the effects of soil salinity and water stress are generally additive in their 

impacts on crop evapotranspiration and therefore in terms of crop growth and yield.  

On the one hand there are the steady-state models which assume that salt 

concentrations in soil water are almost constant for a given location and time period, 

allowing a simple representation of soil salinity and plant growth conditions. For 

example, the SIMDualKc model, which applies the FAO dual-crop coefficient approach 

to partition crop evapotranspiration into crop transpiration and soil evaporation, uses a 

steady-state salinity approach and computes the soil water balance daily using transient 

information (Pereira et al., 2007; Rosa et al., 2016, 2012), allowing appropriate water 

management and irrigation in saline/sodic environments. SALTMED model (Ragab, 
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2002) constitutes another example of models using this precise approach (Maas and 

Hoffman, 1977) for computing the soil water balance under salinity conditions.  

On the other hand, there are the transient state models that simulate changes in soil–

water content and salinity in the root zone caused by irrigation, rainfall, soil heterogeneity 

and management options. These changes may refer to timing and amount of irrigation, 

variable soil salinity conditions, variable crops and crop salinity tolerances, and variable 

irrigation water quality including rainfall. This group of models include, among others, 

UNSATCHEM (Šimůnek and Suarez, 1994), SWIM (Verburg, 1996), SALTMOD 

(Oosterbaan, 2000), SALTMED (Ragab, 2002), SWAP (Kroes et al., 2017; Van Dam et 

al., 2008), and HYDRUS (Šimůnek et al., 2016). Unfortunately, we have not found any 

salt modelling study related to rainfed rice, mangrove swamp rice or any rice-salt-

modelling studies for GB or on the African continent. 

As previously discussed, the MSRPS system in GB has a high concentration of 

soluble salts in the soil. In addition, there are no irrigation systems or others freshwater 

sources available (The Republic of Guinea-Bissau., 2018). Therefore, rice production is 

limited by the amount of rainfall, which is responsible for leaching salts to deeper layers 

(Cornelissen et al., 2020). Effective freshwater collection and management ensure rice 

production and, consequently, high-water productivity of collected rainwater. However, 

there is no information about the water and salt balance in the system to improve farmers’ 

harvesting schedules. Therefore, such information is required to adequately design 

strategies and practices that enable better control of salinity and thus improve farmers’ 

livelihoods.  

To evaluate the performance of different rice farming systems, such as MSRPS, and 

develop practices that result in higher yields and/or water savings, it is important to use 
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indicators such as water productivity. This type of indicator allows comparing different 

cropping systems. The physical water productivity (WP, kg m-3) is defined as the ratio of 

crop yield to the total water use (TWU) required to achieve the harvestable yield, 

expressed as kg m-3 (Ferreira et al., 2023; Pereira et al., 2012; Rodrigues and Pereira, 

2009). The TWU is specified by the sum of four factors that quantify an approach of 

water consumed; thus, water productivity is computed as;  

 

𝑊𝑃 =
𝛾𝑎

𝑃 + ∆𝑆𝑊 + 𝐶𝑅 + 𝐼
 (Eq 2.1) 

where:  

𝛾𝑎: total harvested grain (kg) 

P: seasonal rainfall amount (m3) 

∆𝑆𝑊: variation in soil water storage in the root zone from planting to harvest (m3) 

𝐶𝑅: capillary rise or groundwater contribution from a shallow water table (m3) 

𝐼: total seasonal irrigation amount (m3) 

As already mentioned, in saline soils, despite good agronomic management, the 

potential crop yield is not achieved and therefore the WP is reduced. Frequently, the WP 

denominator (Eq. 2.1) in MSRP does not take irrigation into account because it is not 

used. The reduction in water input is expected to be less than the reduction in yield, 

resulting in low WP (Bouman et al., 2007). 

Under salinity conditions, an additional fraction of water is required to make the 

soil productive. Normally, irrigation water is increased by the leaching fraction (Maas 

and Hoffman, 1977; Minhas et al., 2020). Thus, the term TWU in Eq. 2.1 quantifies 

additional terms associated with salinity-induced stress on the crop (Pereira et al., 2012; 

Rodrigues and Pereira, 2009). First, 𝐸𝑇𝑐 𝑎𝑐𝑡 is the seasonal actual evapotranspiration 
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(when cropped under salinity and other stresses such as water). Second, 𝐿𝐹 quantifies the 

volume of water used to leach the salts from the rhizosphere. Third, 𝑁 − 𝐵𝑊𝑈 is the 

water not beneficial for the crop, meaning the excess water that flows beyond the rootzone 

(deep percolation or drainage), runoff from fields, water losses due to evaporation, and 

wind drift in sprinkling in irrigated systems. Therefore, WP quantifies the total production 

achieved based on the sum of three main factors as follows:  

𝑊𝑃𝑠 =
𝛾𝑎

𝐸𝑇𝑐 𝑎𝑐𝑡 + 𝐿𝐹 + 𝑁 − 𝐵𝑊𝑈
 (Eq 2.2) 

where:  

𝑊𝑃𝑠𝑎𝑙𝑡: water productivity in saline sites (kg m-3) 

𝛾𝑎: total harvested grain (kg) 

𝐸𝑇𝑐 𝑎𝑐𝑡: seasonal actual crop evapotranspiration (m3) 

𝐿𝐹: water used for leaching salts from the rootzone (m3) 

𝑁 − 𝐵𝑊𝑈: non-beneficial water use (m3) 

 

In GB this WPsalt concept is most applicable to the MSRPS due to the presence of 

salt. However, no information is available to account for the losses in non-beneficial water 

use (N-BWU); these are mainly due to evaporation of paddies water, and in very few 

cases due to system drainage (Bouman et al., 2007). Runoff is commonly null unless 

precipitation events are high and in extreme cases may lead to the destruction of the dikes. 

Rice yield under salinity conditions may be improved through the implementation of 

breeding strategies which will increase WPsalt.  

As discussed by Zwart (Zwart, 2013) comparing different rainfed cropping systems 

based on water productivity indicators must be performed with caution and non-

manageable factors should be excluded. High WP values obtained under non-saline soils 
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or saline shallow water-table cannot be set as a benchmark value for a rainfed rice system; 

this means that regional or local optimized WP values should be used. 

Essentially, constraints on rice yield within the MSRPS, and consequently on rice 

WP, are mainly related to challenges in efficient water management practices that enable 

soil salinity control. Every farmer must work closely with his neighbors to produce rice 

and gain a good understanding of water dynamics (through endogenous knowledge and 

informal networks of kin and kith) to ensure a successful rice harvest every year (Caeiro, 

2019).  

Due to the lack of information regarding local mangrove swamp rice yield, salt 

balance, and rice seasonal rainfall amounts there are, to our knowledge, no studies 

available about WP estimates in GB. Furthermore, we did not find any study on water 

productivity associated with mangrove swamp rice affected by salinity on the African 

continent. 

5. General soil properties, taxonomy, and topography in MSR fields 

MSR fields have different physicochemical soil properties and levels of anoxia 

compared to former mangrove soils. The latter are considered to be high-sulfur 

environments with a notable presence of clays and salts (Sylla, 1994). However, despite 

having the same pedogenic formation, bolanhas’ soils are distinguished by high oxidation 

levels that allow the growth of plants susceptible to salinity (D’Amico et al., 2023). This 

allows the development of new soil horizons characterized by different chronologically 

deposited materials (Andriesse and Fresco, 1991).  
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5.1.  Soil taxonomy in associated - tidal mangrove fields and tidal 

mangrove terrace 

In general, GB presents three main soil categories in terms of soil physicochemical 

properties. The ferrallitic and ferruginous (non-hydromorphic) soils, in which a high 

concentration of iron predominates, are red in color and occur in upland areas. The 

hydromorphic soils, which include both marine alluvial (Halo-hydromorphic, as the ones 

of bolanhas salgadas) and continental (Grey, alluvial and terrace, Gley, Humic-gley) 

soils, characterized by long periods of anoxia and the presence of gley horizons 

(Oosterbaan and Vos, 1980; Teixeira, 1962; Ukpong, 1997). Finally, the lithic soils are 

characterized by the presence of rocks and consolidated materials in their horizons 

(Teixeira, 1962). A clear topo-sequence is observed in many villages (Table 2.4) with 

hydromorphic soils (Bolanhas’ soils) occurring alongside ferrallitic soils (villages’ 

upland soils). These ferrallitic soils are used for growing cash crops such as cashew, 

vegetables, and for rice nurseries.  

Gleization soil conditions are prevalent in mangroves and plots soils, along with 

high concentration of sulphites and sulphates and a significant variability in soil organic 

carbon (SOC) concentration. Reduction conditions are commonly observed in mangrove 

soils (Teixeira, 1962). This extends across the entire soil profile, particularly within the 

first 150 cm of soil depth. In contrast, Bolanhas’ soils are predominantly characterized 

by annual fluctuation in groundwater, with depths ranging from 30 to 150 cm below the 

soil surface (D’Amico et al., 2023). Soil taxonomic classifications reported for 

mangroves’ and Bolanhas’ soils are categorized based on the presence of sulphates and 

sulphites, horizon development, and organic matter content (Table 2.4). Thus, this 

variation is observed across the entire toposequence (tidal mangroves, associated 

mangroves, and old Bolanha fields), including mangrove areas and villages. In addition, 
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certain locations have been reported to have low concentrations of SOC derived from 

marine carbon (Andreetta et al., 2016). In this context, the deserted plots showed a 

significant decline across the soil profile compared to mangrove soils and new plots 

(Andreetta et al., 2016; D’Amico et al., 2023; Marius and Lucas, 1982). 

The design of Guinea-Bissau’s MSR plots varies depending on agroecologies’ 

differences and the cultural practices of each ethnic group for water management, 

resulting in changes in the physicochemical properties of the soils. Different plot designs 

exist between the southern and northern regions of the country, with ethnic groups 

determining the size of plots based on the amount of stored fresh water they want to 

harvest (Figure 2.7). In the southern and central parts of GB, farmers construct dikes with 

significantly larger dimensions than those in the north. The probability arises from the 

soil texture, potentially facilitating the construction of larger dikes and deeper primary 

drainage channels (Figure 2.7, A.3), attributed to the clay deposit from alluvial sediments 

into the soil profile (D’Amico et al., 2023; Teixeira, 1962). In addition, the high rainfall 

levels lead farmers to modify internal drainage systems at the plot level to remove salts 

and increase leaching during the first rains (Cooper and McConkey, 2005; Espírito-Santo, 

1949). For example, southern farmers design internal drainage systems (without outlets) 

within plots, while farmers in the north do not implement drainage systems to maintain a 

consistent water level within the plot (Oosterbaan and Vos, 1980). This has a significant 

impact on the salt concentration in the plots as farmers in the south manage to flush out 

the salt present in the upper soil layers with the first rainfall. Through the dilution of salts 

and their transport to the small drainage systems without outlets (Figure 2.7, A.5), farmers 

have a convenient method to open the plot and discharge the saline solution before soil 

tillage.    
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Table 2.4. Soil taxonomy and physicochemical characteristics in mangrove terrace, tidal 

mangrove and associated mangrove fields in Guinea-Bissau.  

Characteristics 
Tidal mangroves 

terrace 
Tidal mangrove fields Associated mangrove 

Soil taxonomy  

(USDA) 

 

Haplic 

sulfaquents, 

Typic 

sulfaquents, 

Sulfic 

Fluvaquents, 

Sulfic, 

Hydraquents, 

Sulfohimists, 

Hemists, Fibrists. 

Histic Sulfaquents, Hapic 

sulfaquents, Typic 

Sulfaquept, Sulfic 

hydraqiuentsm, 

Tropofibrits  

Psammaquents, Sulfic 

tropaquepts, Typic 

tropaquepts, Aeric 

tropaquepts, 

Psammaquents. 

Pisoplinthic, 

Hypothionic, Tidalic, 

Oxygleyic, 

Tropoquepts, 

Endoaquents. 

Soil taxonomy  

(WRB-FAO) 

Tidalic, 

Oxygleyic,  

Gleysol (clayic, 

hyposulfidic).  

Hypothionic, 

Pisoplintic, Oxygleyic, 

Tidalic, Gleysol (vertic, 

drainic, salic, clayic). 

Pisoplintic, 

Hypothionic, Gleysol 

(abruptic, loamy, 

drainic, salic, clayic, 

vertic). 

Geochemical 

conditions   
Anoxic  Sub-oxidation  Oxidation  

Solubility of sulphates 

and sulphites 
High  High – Medium  Low 

Al - Fe+2 toxicity  High High – Medium Medium - Low 

Na+ High High Medium - Low 

Soil organic carbon High  High – Medium  Low 

Possible chemical 

formations 

Reduced iron 

(Fe2+) 

Iron monosulfide 

(FeS) 

Iron disulfide 

(FeS2) 

 

 

Iron monosulfide (FeS) 

Pyrite (2FeS2) 

Reduced iron (Fe2+) 

Oxidized iron (Fe+3)  

Hydrogen (H+) 

Hydrogen sulfite (H2S) 

Aluminum (Al+2) 

Sulphate (SO4
2-) 

Sulphites (SO3
2-) 

Pyrite (2FeS2) 

Hydrogen (H+) 

Aluminum (Al+3) 

Oxidized iron (Fe+3)  

Sodium (Na+) 

Sulphate (SO4
2-) 

 

References 
(Andreetta et al., 2016; D’Amico et al., 2023; Marius and Lucas, 1982; 

Teixeira, 1962) 
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Figure 2.7. Characteristic of southern Balanta (A), northern Felupe and Baiote (B) and 

an example of new bolanhas (C) in Guinea-Bissau. 1 = Main dike in the South 

(Orike grande); 2 = Verandah (Varanda); 3= Main drainage (Valeta); 4 = Plots 

bunds (Orike pekno); 5 = Small drainage without outlets in the South (Valeta 

do prike); 6 = Main dike without verandah in the North (Orike grande); 7 = 

Plot without internal drainage in the North (Prike); 8 = Ridges (Réguas); 9 = 

New plot without ridges (Bolanha novo). Adapted from (Cooper and 

McConkey, 2005; Cormier-Salem, 1999; Merkohasanaj et al., 2022) 

Soil fertility is significantly influenced by proximity to tidal mangrove areas, as 

these soils have higher accumulation of SOC. This is related to the quantity of organic 

materials present, which mineralize over time and release a significant amount of 

nutrients that benefit the crop (Merkohasanaj et al., 2022). Due to the decline in SOC 

occurring in old plots (Andreetta et al., 2016; D’Amico et al., 2023), farmers in GB 

frequently tend to develop new mangrove swamp fields (Figure 2.7, C.9), with the aim of 

finding more fertile and highly productive areas for growing rice. However, as previously 

mentioned the new plots (bolanha novo) are the only areas with a high concentration of 



73 

 

salts and sulfuric acids in the first surface layers of the soil. Due to their active oxidation 

state, this can potentially cause serious problems with rice growth. This is different from 

bolanha de tarrafe and bolanha de metade fields (plots located in the middle part of the 

paddies far from the mangroves), as these have undergone prolonged oxidation. Many of 

these salts, sulfites and sulfates, were leached by rainfall and settled in deeper horizons, 

where they do not affect rice growth (D’Amico et al., 2023). 

5.2.  Acidity formation in tidal mangrove soils.  

Sulfuric acids in the soils of MSR fields start affecting the crop in the early stages 

of the new plots (first 3-5 years). New plots are the most vulnerable sites because they 

initiate the desalination process and exhibit active pedochemical acidification (Table 2.4, 

Figure 2.8). These chemical processes depend on the amount of rainfall in the system as 

fresh water catalyze chemical processes and leach toxic compounds such as sulfuric acid 

(2SO4
2-), hydrogen sulfite (H2S), pyrite (2FeS2), reduced iron (Fe2+) and iron monosulfite 

(FeS) into deeper soil layers (Sylla, 1994; Van Ghent and Ukkerman, 1993; van Oort, 

2018). Within the dynamic systems of oxidation and reduction, pyrite and sulfuric acid 

are formed, and organic materials decompose (Figure 2.8). These processes can increase 

soil acidity, resulting in extremely low pH values (< 3.5), reducing the availability of 

various nutrients to plants (N, K, Ca, Mg, P, Zn) and causing toxicity (Al3+, Fe2+) in the 

soil (Dossou-Yovo et al., 2022; Sylla, 1994). However, in some tidal mangroves (bolanha 

de Tarrafe) and associated mangroves (bolanha Metadi) these processes only occur at 

deeper horizons where they do not affect the plant's root system (Andreetta et al., 2016; 

D’Amico et al., 2023; Sylla et al., 1995; Teixeira, 1962). In summary, villages in the 

northern and southern regions face problems of sulfuric acid toxicity especially in 

“bolanha novo”, with some “bolanha de Tarrafe” occasionally affected by a strong 

influence of groundwater levels and tides (Marius and Lucas, 1982). 
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Figure 2.8. Chemical process in acid sulphate soils under Mangrove swamp rice 

production systems. Adapted from of (Sylla, 1994; Teixeira, 1962).  

6. Rainfall patterns and farmers’ agronomic practices related to water 

management in the MSRPS 

The rice production cycle in GB is constrained by the rainy season (onset and 

duration and length of dry spells) and the accumulated rainfall. Fresh water availability 

is the limiting factor for rice production across the country, especially in the MSRPS. The 

system relies on salt leaching and substantial water accumulation to ensure a complete 

crop cycle. Recent rainfall reports have shown that rainfall patterns are heterogeneous 

(Mendes and Fragoso, 2023; Njipouakouyou et al., 2019). In the period from 1961 to 

1985, there was a significant decrease in rainfall in the country (Figure 2.9). However, it 

is estimated that there has been a slight increase in annual rainfall of around 350 mm over 

the last 40 years (Figure 2.9). It is evident that the Bolama region consistently receives 

higher rainfall (1953 mm) than the Bafata (1276 mm) and Bissau (1524 mm) regions 

(Figure 2.9). For the other MSRPS regions, Tombali, Oio and Cacheu, there is currently 
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a lack of meteorological data. Some reports in the 1980s from the Casamance/Senegal, 

which lie close to Cacheu Region, estimated that the average annual rainfall ranged from 

1200 and 5000 mm (Linares, 1981), which is sufficient to support MSR growth. 

Although most regions of the country receive sufficient rainfall for rice production, 

the main challenge lies in the uneven distribution of rainfall, that occurs within a relatively 

short timeframe (Mendes and Fragoso, 2023). This condition has a significant impact on 

rice growth. Rainfall is the most important factor in soil management, agronomic 

practices for rice cultivation, and the overall sustainability of the MSRPS. This creates 

significant challenges in managing the water and salt balance in rice production (Luning, 

1984).  

 

Figure 2.9. Smoothed conditional means plots of rainfall (mm) in Bolama, Bafata and 

Bissau, Guinea-Bissau, for the period 1961-2022. Data source: World Bank 

information (The World Bank, 2023) and National Institute of Meteorology of 

Guinea-Bissau. 

The manual preparation of the plots’ ridges, depends on ensuring adequate soil 

moisture for tillage, and therefore on the beginning of the rainy season (W Hawthorne, 
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2001; Van Ghent and Ukkerman, 1993). Nevertheless, sufficient soil moisture is required 

to avoid problems with soil plasticity during plowing. There is no information available 

on the plasticity limits associated with soil tillage, although there are old reports of the 

use of mechanization for soil tillage in GB (Cabral, 1954b). However, not all farmers 

have the necessary resources for mechanized operations, further exacerbated by limited 

access to large machinery on the plots (Cabral, 1954a). Furthermore, heavy machines can 

not only compact the clay soils, but also create/increase weed infestations. On the 

contrary, the manual plow is an affordable and sustainable tool that is accessible to all farmers 

in the villages (Bivar and Temudo, 2014; Martiarena and Temudo, 2023; Temudo, 1998), 

with which they can better control soil and weed conditions.  

After soil tillage, farmers use two rice planting techniques: transplanting and direct 

seeding (Cossa, 2023; Temudo, 1998). Transplanting is the most used technique as it 

ensures more uniform distribution of the plants and usually a higher productivity (Nuijten 

et al., 2009). There is no exact date for planting in nursery, but generally it depends on 

the first rains, individual farmer’s experience, soil moisture, and salinity levels at the sites. 

Direct seeding is most frequently used in bolanha de Tarrafe, where the farmer identifies 

sites with good fertility and low salinity (Röhrig et al., 2021; Temudo, 1998; Van Ghent 

and Ukkerman, 1993). In this technique, some sites are plowed while others simply 

planted or broadcasted with pre-germinated rice seeds (Cossa, 2023; Temudo, 1998).  

The rice harvest usually begins in November and lasts through January but depends 

mainly on the schedule set by farmers, which mainly depends on each year rainfall 

distribution pattern in each village. There are agronomic and social problems in the 

villages preventing them from using short cycle varieties. When rice is mature in only 

few plots of a bolanha, it is very likely that the birds will concentrate their feeding 

destroying completely the potential harvest (Linares, 2002; Teeken and Temudo, 2021). 
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However, if all farmers harvest their rice at the same time, this problem is distributed 

among all plots (Temudo, 1998). Additionally, farmers must plan their harvests based on 

the water availability and salinity levels associated with their plots (W Hawthorne, 2001; 

Marzouk, 1991). At the end of the crop cycle, the dilution of salts has a reverse effect 

(decreases again due to the end of the rains), leading to water and salt stress in rice plants 

(Dossou-Yovo et al., 2022; Van Ghent and Ukkerman, 1993). In addition, 

evapotranspiration increases the salt concentration in the plots, leading to productivity 

problems (Abreu and Correia, 1993; Padhy et al., 2022).  

6.1.  The use of dikes, bunds and rigdes for water management in the 

paddies   

The main dikes are structures used to prevent tidal water from entering the paddies 

(Figure 2.10), while the bunds are used by farmers to collect and store fresh water inside 

the plots. At the topographic scale of the system, the slopes toward the mangroves are in 

general minimal and serve only to channel water from one plot to another. In addition, 

soil texture, the level of the groundwater and the location of the plots within the paddies 

can either favor or hamper a rapid accumulation of fresh water in the plots. Consequently, 

dikes play a central role in rice cultivation due to their control over leaching, oxygenation, 

and water storage in the plot, distinguishing them from the mangrove forests’ soils (The 

Republic of Guinea-Bissau., 2018). 

Bunds or secondary dikes surrounding the plots are the primary structure 

responsible for managing water levels in the MSRPS (Figure 2.7, A.4). These play an 

important role in ensuring the appropriate water depth during rice growth. However, when 

heavy rainfalls occur during several consecutive days simultaneously with spring tides, 

farmers may be unable to divert the excess water to other plots and then to the sea branch. 

This kind of situation led to the loss of a significant portion of rice nurseries in mangrove 
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fields during 2022. There is no information about the distribution, quantity, and potential 

cumulative water content within the plots according to rain distribution, especially in 

relation to high tides (when it becomes impossible to drain excess freshwater through the 

drainage pipes to the river or sea branch).  

 

 

Figure 2.10. Plots of rice production system in mangrove of Elalab, Guinea-Bissau. 

Identification of (a) dikes, (b) drainage channels, (c) plots, (d) bunds, and (e) 

ridges.  

Ridges play a critical role in the MSRPS by increasing soil fertility and reducing 

soil resistance to roots penetration. Soil tillage in MSR plots promotes the incorporation 

of existing weeds, increasing the amount of SOC and triggering the mineralization 

process. Mineralization gradually releases nutrients, promoting the growth of rice plants 

and generating satisfactory yields. Additionally, ridges facilitate better rice transplanting 

by reducing soil compaction. Some studies have shown that ridges also promote the 

leaching of salts and toxic concentrations of soil acids (J Espírito-Santo, 1949; The 

Republic of Guinea-Bissau., 2018). The use of ridges is specifically aimed at improving 

the management of the soil physicochemical properties in rice production systems. Only 

in a few cases, such as new plots, farmers do not use ridges (Figure 2.7, C.9), because the 
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soil is already high in fertility and lacks compaction (The Republic of Guinea-Bissau., 

2018). They usually use these plots for rice nurseries or direct planting without tillage. 

The bunds (Figure 2.10.d) are the main infrastructure for rice harvesting, agronomic 

management, and water conservation in the plots. Proper management of freshwater in 

plots can ensure good harvests (J. Espírito-Santo, 1949; W Hawthorne, 2001), effective 

pest control, and prevent salinization problems at critical phenological stages (R3-R6). 

The potential of the plots for storing fresh water is determined by the height of the 

bunds and the topography of the plot floor. After rice transplantation, farmers control the 

level of stored fresh water according to the plant height. They open the bunds to ensure 

that the water level does not submerge the seedlings, which could lead to their death. 

When the rice plants reach a size beyond the limit of the bund, this is closed completely 

to maximize water storage. Since fresh water is present within the bund, only rice and 

other Poaceae species with aerenchyma tissue can thrive in waterlogging conditions. This 

prevents the growth of weeds that could affect rice cultivation. The ruptures in the main 

dikes are related to maintenance work, heavy rainfall, soil texture, and high tides. Soils 

with a high clay content offer increased rigidity to the dikes, enhancing their stability. 

Conversely, in regions characterized by sandy soils, dike maintenance requires substantial 

manual labor and constant attention (Bivar and Temudo, 2014; Temudo, 1998). In 

northern GB, there have been reports of dike maintenance problems due to labor shortage, 

resulting in saltwater intrusion into the polders and complete losses of rice production 

areas (Temudo et al., 2022; Temudo and Cabral, 2023). Dike maintenance is a 

collaborative task that requires strong cooperation and communication among farmers to 

prevent ruptures and facilitate a quick repair during the rainy season. 
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In 2020, high rainfall over a short period combined with high and strong tides, 

resulted in significant damage to many main dikes in several villages of GB (Mendes and 

Fragoso, 2023). This damage led to the intrusion of saltwater into the paddies, causing 

significant problems in rice production as farmers lost their harvests and substantial areas 

of rice fields and crops. Nevertheless, there is evidence from other countries that saline 

water intrusion can help eliminate weeds and increase soil fertility (Wolanski and 

Cassagne, 2000); this practice was also used by GB farmers during colonial times. 

However, allowing the invasion of the brackish water during the dry season requires high 

rainfalls for salt leaching, as it could lead to hypersaline problems at planting sites 

(Chauhan et al., 2017; J Espírito-Santo, 1949; The Republic of Guinea-Bissau., 2018; 

Wolanski and Cassagne, 2000). 

7. Key issues overview and future research 

With this review article, we aimed to characterize the mangrove swamp rice 

production system of Guinea-Bissau in relation to soil salinity, water use and water 

productivity.  

The biophysical description serves as the initial approach to comprehending the 

intricate dynamics of MSRP in GB. These dynamics are based on over 2000 years of 

agricultural experience and acclimatization, during which farmers have learned to 

manage this complex system to render it productive for growing rice. Through 

observations and experimentations over time, farmers have learned to manage the 

physicochemical characteristics of sites, by using efficient water harvesting techniques 

and selecting appropriate rice varieties. This has enabled them to create specific swamp 

rice production areas (named Bolanhas in Kriol), where they conceptualize the working 

methods, suitable varieties for growth and the agronomic care required for each location 
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(“Bolanha Belju”, “B. metadi”, “B. tarrafe”, “B. nobu” and “Nhatabas – Tarrafe 

novo”).  

This information is characteristic for each village, as each region presents vastly 

different and highly complex biosystems in terms of climatic conditions, soils, and crop 

management needs. Several questions remain to be answered such as: Why do farmers 

use drains on the swamp fields in the south, while these are not present in the north? Does 

salinity decrease if drains are used within the swamp fields? Can these drains help store 

a greater amount of freshwater? How are the initial salt conditions distributed in a MSRP 

field? When is the appropriate time for plants to grow without salt affecting their growth 

and productivity? There is a need to perform a biophysical characterization of the plots 

and create maps of certain physico-chemical soil properties. Due to the specificity of the 

system at each location there is therefore a research gap that needs to be overcome. With 

this in mind, studies were developed in Cafine-Cafal in the south and Elalab in the north 

of GB and presented in the companion article Garbanzo et al., (2024) (Chapter 3).      

The agronomic practices developed in the MSRPS in GB are tailored exclusively 

for rice cultivation, aiming for optimizing rice yield and water conservation in the 

“bolanhas”. A greater availability of freshwater in the plots would ensure rice production 

in the villages, as the crop does not face issues of water-saline stress within the system. 

These practices have been refined through generations of farmers, benefiting from their 

specialized experiences. However, under the current and future climate change scenario, 

particularly in terms of variability and reduced rainfall, these already vulnerable systems 

will become more fragile. This fragility results mainly from the increase in soil salinity 

due to reduced salt leaching by rainfall. It is fundamental to adapt crop management to 

the variable rainfall calendar, labor efficiency and the soil hydro-salt dynamics. This set 

of constraints affects rice production, exposing communities in the villages to food 
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insecurity and malnutrition. Therefore, further information to characterize the biosystems 

and rice varieties is essential to develop tailored practices that meet the specific needs of 

each village. This information is crucial for supporting decision making when planning 

sustainable management of grain production in the near future.  

The main constraints to agricultural performance and rice productivity in GB have 

been identified and are related to insufficient and irregular distribution of rainfall, 

declining soil fertility, and poor water management. The information collected indicated 

that there is: 

✓ A wide range of rice varieties with different names is found in the MSRPS. 

Understanding their characteristics of each variety, particularly in terms of salt 

tolerance, could improve agronomic recommendations at the national level.  

✓ A lack of understanding of water dynamics in MSRPS. This knowledge, obtained 

from field measurements and modelling, could facilitate the efficient planning of rice 

production cycles while minimizing problems related to toxicity and salinity.  

✓ A lack of knowledge about the salt balance, especially regarding the initial and final 

salinity conditions in different contexts. The development of a tool that allows to 

assess the hydro-saline balance performance in the MSRP is crucial to optimize the 

cultivation calendar for the timely start of each rice production season.  

✓ Limited information on soil fertility, nutrient dynamics, and their relationship to 

MSRPS productivity. Comprehensive soil chemical characterization and 

understanding of nutrient dynamics could improve on-site nutrient management.  
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✓ No information regarding the spatialization of physicochemical properties in swamp 

fields (“bolanhas"). Spatial mapping of soil properties could help identify areas with 

higher fertility, salinity, and the potential for improving rice productivity.  

✓ Insufficient studies on plasticity related to adequate soil moisture at the beginning of 

farming operations. Generating maps in this regard could provide farmers with 

valuable tools, allowing them to prioritize sites with optimal conditions for soil 

tillage. The companion article by Garbanzo et al. (Garbanzo et al., 2024) developed 

soil consistency maps with the aim of supporting farmers in decision making. 

✓ A lack of studies on tidal dynamics for the creation of an early warning system and 

on main dike management. Providing information about extreme climatic events, 

monitoring and identifying vulnerable zones and help in the dissemination of recent 

endogenous innovations on dike building and maintenance could help prevent 

saltwater intrusion and minimize losses in rice production.  

✓ A lack of continuous regional climate monitoring programs. Characterization of 

regional climatic variables could assist in agronomic calculation of rice water 

requirements in the MSRPS of GB. This would enable the development of early 

warning systems to support decision-making in rice production. 

✓ Local constraints to balance ecosystem sustainability with the food needs of coastal 

people, who feel urged to clear new mangrove areas to create rice fields even when 

there was a need to restore deforested areas to prevent dike ruptures and harvest 

failures. This implies that compensation mechanisms for poor coastal inhabitants 

must be created to protect ecosystem services in GB blue carbon environments. 
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✓ External interventions or development projects do not usually align with the local 

realities and the needs of farmers’ leading to challenges in implementing sustainable 

practices.  

✓ Limited programs to restore desertified swamp fields. Initiating restoration efforts 

for these plots could include planting trees through the introduction of agroforestry 

practices and/or improving the conditions for reviving rice cultivation.  

Overall, there is still a lot of progress to be made in terms of research relative to 

MSRPS conservation and management. 
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Chapter 3 
 

Moving toward the Biophysical Characterization of 

the Mangrove Swamp Rice Production System in 

Guinea Bissau: Exploring Tools to Improve Soil- 

and Water-Use Efficiencies 
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1. Abstract 

The mangrove swamp rice production system (MSRPS) in West Africa faces significant 

challenges in soil, water, and salinity management, making rice production highly 

vulnerable to variations in the spatio-temporal distribution patterns of rainfall, which are 

exacerbated by climate change. This study’s results can provide the initial basis for co-

developing strategies with farmers aiming to contribute to the biophysical 

characterization of the MSRPS, in particular: (i) estimate the water-harvesting efficiency 

(WLef) of the plots in the north and south of Guinea-Bissau (GB); (ii) characterize the 

unevenness of the bottom of the plots, which leads to salinization spots; and (iii) create 

soil consistency maps to provide farmers with a tool to prioritize sites with optimal 

conditions for tillage. The research was conducted between 2021 and 2023 in the study 

site of Cafine-Cafal in the south and Elalab in the north of GB. Systematic soil sampling 

in a grid was designed to quantify the soil consistency and plot/ridge areas were 

determined. Linear models were developed to predict biophysical parameters (e.g., 

effective planting areas and water-logging depths) and geostatistics were used to create 

soil consistency maps for each study site. The results show precipitation water-harvesting 

efficiencies of 15% and 16% for the southern and northern regions, respectively. 

Furthermore, the plasticity limits of 18.6% for Elalab and 35.5% for Cafine-Cafal show 

the most appropriate times to start tillage in specific areas of the paddies. This study 

provides information on the efficient management of tillage and freshwater conservation, 

providing MSRPS farmers with useful tools to counteract the effects caused by salinity 

and rainfall variability.  
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2. Introduction 

Rice is one of the main cereals in the diet of tropical countries worldwide. 

According to estimates by the Food and Agriculture Organization, its production has 

increased from 426 to 510 million tons over the last 10 years (Chauhan et al., 2017; Food 

and Agriculture Organization of the United Nations., 2018; Kraehmer et al., 2017).  

In the tropical region of northwest Africa, rice is the most consumed cereal at a 

regional level, particularly in countries such as Senegal, Guinea-Bissau, Guinea Conakry, 

and The Gambia (Kyle, 2015). These countries have a specific rice production system 

linked to the mangrove forests of the coastal areas, designated as mangrove swamp rice 

production systems (MSRPSs).  

An MSRPS results from the slashing of the mangrove trees and the construction of 

dikes for the creation of paddies (Ukpong, 1995). Thus, MSRPSs have been pointed out 

as the main cause of mangrove deforestation in Guinea-Bissau (García del Toro and Más-

López, 2019; Temudo and Cabral, 2017). Among the West African countries practicing 

mangrove swamp rice cultivation, Guinea-Bissau has the largest area occupied by this 

farming system (Hawthorne, 2001; Temudo, 2011; Temudo and Cabral, 2017) and the 

highest total production. This distinctive agro-fishing livestock farming system is based 

on the development of expertise (for dike and dam construction and maintenance, water 

management, control of soil fertility and toxicity, and selection of rice varieties) and the 

intensive mobilization of labor (e.g., for land clearing of mangroves, the construction of 

dikes and canals, soil desalination, and plowing) at certain periods of the crop cycle 

(Hawthorne, 2001; Linares, 1981; Martiarena and Temudo, 2023; Temudo, 2018; Van 

Ghent and Ukkerman, 1993). Both the construction of dikes and bunds that delimit the 

plot and soil tillage are undertaken manually using a long iron-tipped wooden plow. 
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Rainfall is the only source of water to meet crop water needs and to flush salt from 

the soil profile (Écoutin et al., 1999; Espírito-Santo, 1949; Schwarz, 1993; Temudo, 

2011). Therefore, rice is grown during the rainy season (July to November) when the 

planting sites become suitable for the rice plant, namely, the salinity has reduced to 

tolerable levels for rice varieties (Écoutin et al., 1999; Tesio et al., 2021). This makes 

plant growth difficult (Baggie et al., 2018; Ukpong, 1995; van Oort, 2018) and leads to a 

large variability in rice productivity across the country. However, the rainfall impact 

depends on both its annual value and its distribution (Davidson, 2009; Mendes and 

Fragoso, 2023). Climate change and poor water management have led to desertification 

and the abandonment of many fields, which have become infertile and have high salt 

concentrations (Andrieu, 2018; Raimundo Lopes et al., 2022; Temudo and Cabral, 2023). 

Very few field studies on soil characterization and water management have been 

carried out on the MSRPS (Dossou-Yovo et al., 2022; Thiam et al., 2019). These soils 

have very particular physical and chemical properties because, as stated above, they were 

previously occupied by mangroves and flooded with brackish water. Furthermore, the 

water management of an MSRPS is mainly based on the accumulation of rainwater 

(Andreetta et al., 2016; van Oort, 2018).  

The dimensions of plots are of great importance as they facilitate the harvesting of 

fresh water from rainfall, which is crucial for plowing, salt leaching, cation solubility, and 

optimal rice growth (Van Ghent and Ukkerman, 1993). The dimensions of the plots 

observed in one region should not be extrapolated to the national level, as there are 

different cultural practices and knowledge gaps regarding soil, water, and salt 

management. For example, in years and regions with limited rainfall (Mendes and 

Fragoso, 2023), farmers face the challenge of accumulating enough fresh water to manage 

their plots. Additionally, as farmers explore new cultivation areas, they change the size 
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of the plots, resulting in increased variability. Therefore, to ensure optimal soil and water 

management and effective salinity control, it is essential to have a detailed understanding 

of the plot dimensions at local and regional scales, rather than making generalized 

assumptions without empirical basis (Dexter and Bird, 2001). Although MSRPSs are 

dominant in coastal areas of Guinea-Bissau and Senegal (Casamance) (Linares, 1981; 

Penot, 1995), there is still a lack of comprehensive information on the specific regional 

dimensions of these structures. 

The biophysical characterization of the MSRPS is an urgent need, with the aim to 

improve rice production, as suggested in the companion article Garbanzo et al. (Garbanzo 

et al., 2024). This involves studying its physical, biological, and chemical components to 

understand how they interact in a particular environment. Thus, this approach examines 

various elements, such as soil properties, climate, water availability, plant genetics, 

biodiversity, and land-management practices (Hongliang Fang et al., 2005; Martínez-

López et al., 2021; Nambiar et al., 2001; Singh et al., 2008). The biophysical 

characterization of the MSRPS serves as a strategic approach to implementing 

development interventions from multiple perspectives with the goal of establishing a 

sustainable and productive system. The development of cropping diagnostic tools for 

efficient water and soil management represents the first step toward improving rice 

production (Bos et al., 2006; Ukpong, 1997). The national characterization of MSRPS in 

Guinea-Bissau can provide insights into the different ways in which they can become 

better adapted to local agroecological conditions in times of climate change 

(Merkohasanaj et al., 2022; Temudo et al., 2022). Additionally, the development of 

geospatial distribution maps (Fandé et al., 2022) for specific soil management variables 

could be helpful in scheduling manual soil preparation tasks. This could promote a more 

systematic approach to agriculture and rice production that is adapted to the micro-
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climatic diversity of the country (Sylla et al., 1995). Therefore, characterizing parameters 

such as the techniques used in the construction of plots and dams and the soil physical 

parameters could provide an effective strategy for adapting to climate change by 

improving water harvesting, reducing rainfall needs, and mitigating desertification in the 

coastal villages of Guinea-Bissau.  

Soil consistency limits play an important role in soil tillage, i.e., the preparation of 

the soil for growing crops. It determines the workability of the soil, and farmers’ 

knowledge of it allows them to understand how easily the soil can be manipulated, 

shaped, and cultivated (Utomo and Dexter, 1981). It helps in deciding the right time to 

till the soil (Cresswell et al., 1991; Obour et al., 2017; Sharma and Bora, 2003). This can 

also prevent soil compaction, as working beyond the plastic limit can change the soil 

structure, making it more susceptible to compaction, and reducing the porosity, which has 

a negative impact on root growth and water infiltration (Arvidsson and Bölenius, 2006; 

Boekel and Peerlkamp, 1956; Keller et al., 2007; Keller and Dexter, 2012). Proper 

understanding and management of soil consistency limits contribute to the creation of an 

ideal seedbed. This facilitates seed germination, root growth, and overall plant 

development. Essentially, knowledge of soil consistency limits enables more informed 

decisions regarding the timing, depth, and intensity of tillage operations, ultimately 

contributing to improved soil quality and better crop yields. Soil consistency limits refer 

to the different moisture contents at which the soil behaves differently (Haigh et al., 

2013).  

Based on the relationships described above and the research gaps identified in the 

literature (e.g., Garbanzo et al., (2024) (Chapter 2); Martiarena and Temudo, (2023)), the 

present study aimed to contribute to the biophysical characterization of the MSRPS in the 

north and south of Guinea-Bissau in order to improve the understanding of the soil–water–
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salinity relationship for optimized plot management. Specifically, our aim was to (i) 

estimate the water harvesting efficiency of the plots in the north and south of Guinea-

Bissau; (ii) characterize the unevenness of the bottom of the plots, which leads to 

salinization spots; and (iii) create soil consistency maps to provide farmers with a tool to 

prioritize sites with optimal conditions for tillage. 

3. Materials and Methods 

3.1.  Location and Main Characteristics of the Study Sites 

The research presented in this paper was conducted between 2021 and 2023 in two 

regions of Guinea-Bissau (GB). Located in West Africa, GB covers an area of 

approximately 36,125 km2 and is bordered by Senegal to the north, and Guinea Conakry 

to the east and south (Figure 3.1). Two case studies were selected, one in each region. 

The Elalab case study was located at 12°14′48.5″ N, 16°26′30.3″ W in the S. Domingos 

administrative sub-region of Cacheu, which is representative of the “Diola” and “Baiote” 

ethnic groups’ techniques. The Cafine-Cafal case study was located at 11°12′40.4″ N, 

15°10′26.7″ W in the Tombali region, which is representative of the “Balanta” ethnic 

group techniques (Figure 3.1). Both sites present elevations from zero to two meters 

above sea level.  
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Figure 3.1. Locations of Guinea-Bissau and the study sites Elalab and Cafine-Cafal in 

the north (S. Domingos, Cacheu) and south (Tombali) of the country, 

respectively. The maps show points representing the locations where soil 

samples were taken for physical and chemical analysis. 

According to the Koppen climate classification (Beck et al., 2018), the climate in 

these regions is AW, which is a tropical monsoon climate with heavy rainfall during the 

wet season, which usually lasts from June to October. The coastal zone presents an 

average annual rainfall between 1500 and 2500 mm (Mendes and Fragoso, 2023) and 

annual average temperatures range from 24 °C to 27 °C (Sambú, 2003). The temperature 

regime is characterized by a low annual variation, with May being the hottest month (29 

°C) and January the coldest one (25 °C) (Mendes and Fragoso, 2023).  
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The agroecosystem has been classified as a rainfed wetland rice ecosystem, 

particularly within the sub-ecosystems prone to drought and flooding (Balasubramanian 

et al., 2007). These are characterized by high salt concentrations, which limits rice 

cultivation to periods when freshwater storage conditions allow for plant growth. In our 

case studies, samples were collected and observations were made on the entire mangrove 

swamp rice area (paddies), particularly the associated mangroves (“bolanha doce”) and 

tidal mangroves (“bolanha salgada”). There are two traditional systems of rice swamp 

cultivation in GB the inland freshwater swamp fields (“bolanha doce”) and mangrove 

swamp (“bolanha salgada”). Both systems refer to rainfed rice cultivated with a 

permanent depth of water (permanently flooded paddies) until or almost until the end of 

the rice cycle. The freshwater swamps (“bolanha doce”) where rice is cultivated are 

located in inland valleys where there is a shallow water table or an impermeable soil layer 

that allows for water storage, and thus, assures fresh-water harvest. Differently, mangrove 

swamp rice (“bolanha salgada”) is characterized by the former presence of mangrove 

forests invaded by the tides over the years in a fraction of or the whole area of the rice 

fields, thus leading to a high concentration of salts in the soils, as described in the 

companion paper Garbanzo et al. (Garbanzo et al., 2024). 

The soils in the MSRPS areas were included in the orders of the Inceptisols and 

Entisols according to the Soil Taxonomy–USDA (Teixeira, 1962). These soils were 

formed by alluvial fans that resulted from tidal sedimentations (Marius and Lucas, 1991; 

Schoeneberger et al., 2012; Soil Survey Staff., 2022a; Sylla, 1994). They present a Ustic 

moisture regime, as they are dry for at least 90 cumulative days in a normal year (Soil 

Survey Staff., 2022a). Originally, they were mangrove soils that were converted into rice 

production fields through anthropogenic activities after three to five years of preventing 

seawater intrusion by building dikes around the planting sites.  
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3.2.  Experimental Observations and Data Collection 

Using geographical information system software (QGIS), polygons were generated 

to define the rice production areas in Cafine-Cafal and Elalab. Transects were used to assess 

plots and to delimit the main dikes of the paddies. Once the geographic coordinates of the 

site were determined, polygons were generated for delimiting the paddies (“Bolanhas”) 

used for cultivation. Landsat satellite images were used to identify plots and accurately 

delineate the bunds, enabling the determination of their respective areas. These images were 

chosen randomly to provide comprehensive coverage of different paddy sites, with a 

meticulous recording of 100 observations (images) for each study site. Figure 3.2 shows an 

image obtained by a drone, illustrating the identification of plots within specific paddy sites, 

along with the delineation of ridges, furrows, and bunds utilized for rice production.  

 

Figure 3.2. Plots in Mangrove swamp rice in Elalab, Guinea-Bissau. Identification of (a) 

plots, (b) paddies or “Bolanhas”, (c) main dikes, (d) ridges, (e) furrows, and (f) 

bunds. 

In order to generate a systematic sampling within a combined area of 1435 ha, a 

grid of 183 sampling points in Cafine-Cafal and 99 sampling points in Elalab was added 

to the maps of the rice production areas (Figure 3.1). The “Cartodroit” application 

(version V0.61.2_10166) created by the “Instituto Técnico Agrario de Castilla de León” 

was used for this purpose, as it works in areas without an internet connection. Vector 
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raster layers were generated in Sqlite format to locate the points within the rice production 

zones. The sampling points were uploaded to a GPS-equipped Android smartphone to 

precisely identify and locate points within the fields.  

Soil samples (282) were collected at each grid point using an auger and shovel at a 

depth of 0 to 25 cm. The samples were placed in plastic bags and labeled for identification 

for further processing at the Soil and Water Laboratory of the Ministry of Agriculture and 

Rural Development of Guinea-Bissau. The soil consistency analyses were conducted in 

Guinea-Bissau, whereas the soil chemical analyses (Na, Ca, Mg, K, Al, Fe, pH, electrical 

conductivity (EC), and exchangeable acidity) were performed at the Soil and Foliar 

Laboratory of the Agronomic Research Center, University of Costa Rica. 

Several measurements were taken in 60 randomly selected plots at each study site 

during the soil preparation phase (July and August) in order to characterize: (i) the area 

of the plots, (ii) the area exposed for rice cultivation (ridges), and (iii) the topography of 

the bottom of the plots.  

The sizes of the ridges and the areas of the plots were evaluated in both study sites. 

The perimeters of the plots were measured with a scale-meter and the areas were 

quantified. Additionally, the dimensions of three ridges within each plot were measured 

to quantify the area exposed for rice planting.  

The uniformity of plot depths was assessed during the months with the highest 

rainfall (August to September). The depths were determined by measuring the depth of 

water inside the plot (waterlogging height) at different points (Figure 3.3) using a vertical 

scale meter, yielding 180 measurements for each study site.  
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Meteorological data was collected during the experimental years in two automatics 

meteorological stations (ATMOS-41 and ZL6 datalogger): one in the Cafine-Cafal study 

site (11°13′0.588″ N, 15°10′32.358″ W) and the other in Elalab (12°14′47.54″ N, 

16°26′36.424″ W). Data included precipitation, maximum, and minimum temperature.  

 

Figure 3.3. Designated location for measuring the water depth within the plot. (a*) Drone 

photo of a plot in Cafine-Cafal and plot-measuring position. (b*) Conceptual 

diagram of measuring position. 

3.3.  Data Treatment 

3.3.1. Water Harvesting Efficiency 

The water-harvesting efficiency (WLef) was calculated (Equation 3.1) based on the 

total rainfall recorded during the 2021 and 2022 rainy seasons, as well as the plot 

dimensions.  

𝑊𝐿𝑒𝑓 =
𝑝𝑎 × 𝑝𝑛 × 𝑡𝑟

𝑤𝑙 × 𝑝𝑎 × 𝑝𝑛
× 100 (Eq. 3.1) 

 

where WLef is the water harvesting efficiency of the plot (%), pa is the plot area (m2), pn 

is the number of “plots numbers per ha” (n), tr is the annual rainfall (m m−2 year−1), and 

wl is the waterlogging height (m). 

 



97 

 

3.3.2. Soil Consistency and Chemical Analysis 

The soil consistency was evaluated using the commonly known methodologies for 

identifying the Atterberg limits (ASTM Committee D4318-17 on Soil and R Rock, 2010; 

Casagrande, 1958; Keller and Dexter, 2012; Sowers, 1965). For soil consistency 

determinations, soil samples were air-dried for one month, and sub-samples of 150 g were 

prepared to determine three consistency limits: the liquid limit (LL), which is the moisture 

content at which soil transitions from a plastic state to a liquid state (becomes semifluid); 

the sticky limit (SL), which represents the soil moisture at which the soil no longer adheres 

to a steel spatula; and the plastic limit (PL), which is the minimum moisture content at 

which soil remains moldable.  

In order to quantify the soil consistency limits, each sample was individually 

processed as follows: first, the plastic limit (PL) was estimated using the “thread rolling 

test” in which a square ceramic plate was used to form a 3 mm thread. Second, 50 g of 

soil was mixed with water until a paste was formed, and then the adhesion was tested with 

a spatula in order to obtain the sticky limit (SL) (Haigh et al., 2013). The liquid limit (LL) 

was then determined using the long-validated methodology developed by Cassagrande 

(ASTM Committee D4318-17 on Soil and R Rock, 2010; Casagrande, 1958; Keller and 

Dexter, 2012; O’Kelly et al., 2018; Sharma and Bora, 2003; Sivakumar et al., 2015; 

Sowers, 1965). Finally, the gravimetric moisture content was determined in subsamples 

collected for each consistency limit. 

Soil chemical analysis was carried out using extractions with ammonium acetate 

for Na, Ca, Mg, and K and with ammonium oxalate for Al and Fe. The extractions were 

analyzed using inductively coupled plasma mass spectrometry to quantify the 

concentration of elements in each soil sample. In addition, the pH (water), the EC (1:2), 
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and the soil exchangeable acidity were determined. Each soil analysis was conducted in 

accordance with the Soil Survey Staff methodology (Soil Survey Staff., 2022b). 

3.3.3.  Statistical Data Analysis  

The data collected were analyzed separately for each study site. Linear regression 

analysis (Equation 3.2) was used to analyze the correlations between the variables total 

plot area, rice planting areas on ridges, number of rice production plots, and paddies area. 

A box plot was also created to analyze the soil consistency results. In addition, analysis 

of variance and multiple comparisons using Tukey’s test (α = 0.05) were performed to 

determine statistical differences between soil consistency results. To perform the above 

procedures, the RStudio Sofware version 1.4.1103, 2021 (Posit team, 2023), was used. 

 

yi = β0 + β1χi + ei (Eq. 3.2) 

 

where yi is the estimated response (rice planting area on ridges (m2), number of rice 

production plots (n)), β0 is the estimated intercept in the regression, β1 is the estimated 

slope in the regression, χi is the independent variable (total plot area (m2), area (ha)), and 

ei represents the residual error. 

A geostatistical analysis was performed using the Geostatistics for Environmental 

Science (GS+) program. First, the semi-variograms of the soil consistency distributions 

were analyzed, and the best-fitting model was estimated (Table 3.2). Second, the best-

fitting models for the Z variables (soil consistency parameters) were created, which were 

then interpolated using the ordinary Kriging method. Third, the geostatistical analysis 

tool was used to perform cross-validation through resampling methods (leave-one-out 

cross-validation “LOOCV”) on the previously interpolated information. Fourth, residual 
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errors ”𝑒𝑖” calculated for each observation point were extracted and subtracted from the 

original value of each observation point to obtain the predictive capacity of each process. 

Fifth, another geostatistical cross-validation (holdout method “HM”) was carried out 

using 80% of the data to calibrate the models and the other 20% of the data to validate 

the model as an interpolation result. 

 This process involved removing one data point from the original group and 

predicting the value of the variable at the location of the removed data point. 

Subsequently, the root-mean-square error (RMSE), mean absolute error (MAE), and 

Pearson’s correlation coefficient (ρ) were computed to validate the models according to 

the recommended methodology (Adhikari et al., 2013; Garbanzo-León et al., 2017; 

Mosleh et al., 2016; Poggio and Gimona, 2017; Zeraatpisheh et al., 2021). Finally, the 

calculated parameters were evaluated using spatial autocorrelation, which was 

determined using the “Global Mogan’s I” statistic, the Z-score, and P-value calculations 

for each soil consistency parameter (Table 3.1). The interpolation procedures were 

performed using the ArcMap 10.8.2 Geostatistical Software and RStudio version 

2023.09.1 Build 494 (Posit team, 2023). 

Table 3.1. Geostatistical parameters used to calculate the interpolation of soil consistency 

limits in Cafine-Cafal and Elalab study regions in Guinea-Bissau. 

Samples Model Nugget Sill Range 

Cafine-Cafal map interpolation  (m) 

SL * Exponential  22.1 44.2 3192 

LL Exponential  78.0 156.1 1515 

PL Spheric  27.7 73.7 8110 

Elalab map interpolation  (m) 

SL Linear 158.7 158.7 1470.7 

LL Linear 466.9 466.9 1470.7 

PL Linear 47.72 47.72 1470.7 

* SL—sticky limit; LL—liquid limit; PL—plastic limit. 
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4. Results 

4.1.  Precipitation and Temperature 

Figure 3.4 shows the meteorological data collected from both study sites from 2021 

to 2023. Less rainfall was reported at the Elalab study site compared with the Cafine-Cafal 

site. The sites presented annual rainfalls of 1119–1749 mm and 2476–2679 mm, 

respectively. The months with the highest rainfall in both years were July, August, and 

September. The temperature ranged from 22 to 32 °C for both sites. In March and April, 

there were greater fluctuations between the maximum and minimum temperatures at both 

sites. 

 

 

Figure 3.4. Rainfall and temperatures for Cafine-Cafal (A, A1) and Elalab (B, B1) case 

study sites from April 2021 to January 2023. The black dots represent the daily 

average temperature, while the lines illustrate the smoothed curve for 

maximum, minimum, and average temperatures. 
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4.2.  Soil Chemical Properties 

The chemical concentration of nutrients in the areas showed considerable 

variability (Table 3.2). The coefficient of variation ranged from 47% to 200% for the Ca, 

Mg, K, Na, Al, and Fe concentrations. The soils exhibited a pH above 4.4. The Cafine-

Cafal soils may present problems associated with exchangeable acidity (>0.5 cmol(+) 

kg−1), which can affect nutrient availability, hinder root growth, and impact the overall 

health of crops (Espinosa and Molina, 1999; Kunhikrishnan et al., 2016). Furthermore, 

the average cation-exchange capacity (CEC) was 8.98 cmol(+) kg−1 in Elalab and 24.88 

cmol(+) kg-1 in Cafine-Cafal, with values of Na between 0.11 and 234.96 cmol(+) kg−1. 

The latter is a substantial amount of sodium, potentially indicating the need for soil 

amendments or management practices to ensure good conditions for plant growth (Kirkby 

et al., 2023; Espinosa and Molina, 1999; Grattan and Grieve, 1992). The notable 

percentage of saturation bases (SB) indicates high cation concentrations (>175.7 %), 

which may be due to a high sodium concentration in some sites and a low CEC. 
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Table 3.2. Soil chemical analysis results for the Elalab and Cafine-Cafal study sites, as measured from samples collected at the beginning of the 

rainy season between May and June 2021 and 2022. 

Site Statistic 
pH Exchangeable Acidity Ca Mg K Na CEC * SB * Al Fe 

H2O (KCl 1M) Extractable NH4OAC (pH 7.0) (NH4)2C2O4 

   cmol(+) kg-1 % 

Elalab  

n = 99 

Mean 5.9 0.18 3.68 13.66 2.49 75.72 8.98 100 0.04 0.22 

Median 6.0 0.10 2.89 10.77 1.96 59.10 7.02 100 0.03 0.16 

Min 3.7 0.07 0.50 0.17 0.02 0.11 0.510 54.1 0.008 0.02 

Max 7.8 2.50 16.89 16.89 9.84 429.00 31.72 100 0.12 1.10 

Std. dev 1.13 0.28 3.29 11.89 2.38 79.32 7.58 100 0.027 0.22 

Coef. var 0.19 1.59 0.89 0.87 0.96 0.99 0.84 1.4 0.77 1.00 

Cafine-Cafal 

n = 183 

Mean 4.4 1.12 3.51 12.99 1.95 25.75 24.88 100 0.31 0.86 

Median 4.2 0.62 3.19 12.47 1.58 16.49 25.46 100 0.11 0.74 

Min 3.2 0.07 0.45 0.09 0.04 0.10 9.25 3.7 0.04 0.13 

Max 7.7 10.90 11.43 33.57 52.96 234.96 42.07 100 5.65 14.71 

Std. dev 0.60 1.38 1.72 6.05 3.92 31.8 4.14 100 0.65 1.09 

Coef. var 0.14 1.24 0.49 0.47 2.00 1.24 0.17 0.9 2.13 1.26 

* CEC = cation exchange capacity; SB = percent base saturation ({[Ca + Mg + K + Na] / CEC} × 100). 
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4.3.  Effective Planting Areas and Number of Plots 

Figure 3.5 shows the effective planting area (planting area of the ridges) as a 

function of the plot areas. The total ridge area was 9.5% greater in the northern study sites 

(Elalab study site) compared with the southern ones (Cafine-Cafal study site) in Guinea-

Bissau. In Cafine-Cafal (Figure 3.5A), the planting area was 42.3%, while in Elalab 

(Figure 5B), it was 51.8% (r2 > 0.9, p <0.001). The furrow area (Figure 3.2) varied 

between 48.2% and 57.7% between the two study sites when comparing the plots’ area 

with the ridges’ rice planting area. 

 

Figure 3.5. Effective rice-planting area on ridges (RA) evaluated in MSRPS plots in (A) 

Cafine-Cafal and (B) Elalab case study regions. 

The number of rice production plots per hectare was seven times higher in the north 

than in the south of Guinea-Bissau (Figure 3.6). The results showed that Elalab had 

approximately 53 plots per ha (10,000 m2), while Cafine-Cafal had only about 7 plots per 
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ha. When examining larger areas (>1 ha), there was high variability in the plots, as shown 

by the linear regressions (r2 = 0.72–0.75, p < 0.001). 

 

Figure 3.6. Estimation of the total numbers of plots per hectare in the MSRPSs of (A) 

Cafine-Cafal and (B) Elalab in Guinea Bissau. 

4.4.  Water-Harvesting Efficiency 

As described in Section 2.2 (Experimental Observation and Data Collection), water 

depths were measured for nine points, as shown in Figure 3.3. Cafine-Cafal exhibited 

greater variation in waterlogging depths compared with Elalab (Figure 3.7), but the water 

depths in Elalab plots showed greater homogeneity. On average, a waterlogging depth of 

37 cm was observed in Cafine-Cafal, while Elalab had a depth of 23 cm. The water-

harvesting efficiencies (WLef) were 15 and 16% in Cafine-Cafal and Elalab. This approach 

quantified the hydrological effectiveness of a system by evaluating its water harvesting 

capacity relative to annual rainfall within the defined planting area of the plots. It is 

noteworthy that the recorded rainfall in the southern region during the 2021–2022 period 
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amounted to 1411 mm in Elalab and 2426 mm in Cafine-Cafal (Figure 3.4). Thus, the 

water-harvesting efficiency was found to be similar due to the considerable number of plots 

in Elalab within one hectare.  

 

Figure 3.7. Variations in the waterlogging depth (August–September, peak rainfall) and 

water harvesting efficiency based on the total rainfall (WLef) in the 2021 and 

2022 rainy seasons. 

The water depth is a proxy for the topography of the plot floor. The bottom of the 

plots was more heterogeneous in the south of the country. Spatial analysis of the water 

levels in the southern plots revealed that the center had a shallower water depth (14.4 cm), 

while the edges (near the boundary) had greater depths and water accumulations (<50.95 

cm) (Figure 3.8A). Furthermore, water runoff showed a lateral distribution, with greater 

intensity in the corners of the plots. In contrast, in the Elalab study site, a more 

homogeneous distribution was found in the water level variation across the plots (Figure 

3.8B). Thus, the water depth ranged between 17.6 cm and 26.6 cm and had a slope gradient 

directed toward one side of the plots.  
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Figure 3.8. Radial basis function model used to estimate water level variation and water 

movement directions in the MSRPS plots in Guinea-Bissau. Depth of the water 

(A) and slope gradient (A1) in Cafine-Cafal. Depth of the water (B) and slope 

gradient (B1) in Elalab. 

4.5.  Soil Consistency Limits 

The soil consistency analysis shows that the plastic limit (PL) was higher for the 

southern study site than in the north. In Cafine-Cafal, PL corresponded to a gravimetric 

moisture content (θg) of 35.5% (Figure 3.9), which was statistically different (p < 0.01) 

from both the liquid limit (LL) (θg = 65.4%) and the sticky limit (SL) (θg = 29.8%). In 

Elalab, the PL was reached with a θg of 18.6%, and there was no statistical difference 

from the SL (θg = 16.7%). However, the LL showed a significant difference (p < 0.01) 

compared with the other limits (θg = 33.5%). The effort required for soil tillage in northern 

soils was likely significantly lower under conditions exhibiting less plasticity, as opposed 

to the plasticity condition observed in Cafine-Cafal. 
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Figure 3.9. Soil consistency limits (including sticky limit [SL], plastic limit [PL], and 

liquid limit [LL]) in rice paddies for (A) Cafine-Cafal and (B) Elalab study 

sites in Guinea-Bissau. * Mean values with the same letter did not differ 

significantly according to Tukey’s test (α = 0.05). 

Within the context of the spatial analysis, the consistency limits were found to be a 

regionalized variable, that is, they showed a pattern across a geographic area. This is 

shown by the geo-statistical interpolation parameters presented in Table 3.3. The 

geospatial correlation analysis demonstrated a global Moran’s I index < 0, indicating 

spatial autocorrelation due to the high similarity of nearby points (Chen, 2013). The 

variance in the consistency parameters was found to have a mean value of 0.002 in both 

study sites. The variance in Elalab showed a mean value ranging from 0.001 to 0.01. The 

clustering patterns were observed to be random (p = 0.01–<0.001). Therefore, 

interpolation indicates that they were related to spatial autocorrelation, which means they 

were random.  
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Table 3.3. “Global Moran’s I” evaluation and cross-validations calculated for soil consistency limits interpolation in Cafine-Cafal and Elalab in 

Guinea-Bissau. 

Samples 
Global  

Moran’s I 
Variance 

Z  

Punctuation 
p-Value * MAE RMSE Ρ MAE RMSE Ρ MAE RMSE Ρ 

Cafine-Cafal Maps Interpolation LOOCV LOOCV—𝒆𝒊 HM—𝒆𝒊 

SL 0.182 0.002 3.964 <0.001 0.007   0.03 0.93 0.004 0.005 0.99 0.02 0.06 0.78 

LL 0.159 0.0006 3.422 <0.001 0.02 0.04 0.94 0.01 0.02 0.99 0.05 0.08 0.76 

PL 0.149 0.002 3.282 <0.001 0.02 0.04 0.90 0.01 0.02 0.98 0.04 0.07 0.73 

Elalab Maps Interpolation          

SL 0.22 0.002 4.502 <0.001 0.05 0.09 0.66 0.06 0.09 0.72 0.05 0.07 0.70 

LL 0.115 0.003 2.333 0.01 0.10 0.14 0.75 0.09 0.13 0.80 0.10 0.13 0.79 

PL 0.123 0.002 2.516 0.01 0.03 0.05 0.65 0.03 0.05 0.71 0.02 0.03 0.68 

SL—sticky limit, LL—liquid limit, and PL—plastic limit. * A probability of less than 2% that the clustered pattern could be the result of a random likelihood. 

LOOCV—leave-one-out cross-validation. HM—holdout method (cross-validation). 𝑒𝑖—residual errors. RMSE—root-mean-square error. MAE—mean 

absolute error. Ρ—Pearson’s correlation coefficient. 
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The predictive ability of the interpolation was improved by subtracting residual 

errors ”𝑒𝑖” associated with previously interpolated values for each observation. It was 

found that after subtracting the residual errors, the LOOVC showed better parameter 

prediction (MAE and RMSE > 0.13) for each study site compared with the HM (Table 

3.3). However, Elalab showed less accurate consistency limits prediction compared with 

Cafine-Cafal using the best predictive model. The average correlation between the 

observed and interpolated values showed that Cafine-Cafal had a rho (Ρ) ranging from 

98–99%, while Elalab showed a Ρ between 71 and 80%. Therefore, a prediction model 

employed for the construction of a soil consistency map used LOOCV—𝑒𝑖. This model 

could efficiently predict the specific locations or plots where farmers could identify the 

site for first plowing activities.  

The geospatial distribution of soil consistency limits showed the sites with the 

highest plastic limit (PL) in the rice fields of Cafine-Cafal and Elalab (Figure 3.10). 

Paddies (Figure 3.2) exhibited a heterogeneous distribution in soil moisture contents, with 

a significantly lower PL found in the associated mangrove fields. The maximum PL was 

57% in Cafine-Cafal and 28% in Elalab, suggesting that higher values of gravimetric 

moisture are suitable for manual soil preparation. The liquid limit (LL) range determined 

in Cafine-Cafal was between 35% and 86%, while in Elalab, these values ranged between 

19% and 62%. The distribution of gravimetric moisture corresponding to each 

consistency limit on the maps shows the locations where the soil moisture suitable for 

plowing was reached more quickly.  
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Figure 3.10. Interpolation of soil consistency limits, including the sticky limit (SL), 

plastic limit (PL), and liquid limit (LL), in MSRPSs of Cafine-Cafal (A) and 

Elalab (B), Guinea-Bissau. 
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5. Discussion 

The highly spatio-temporal variation in rainfall distribution (Figure 3.4) has a major 

impact on the MSRPS soil tillage calendar. While the total amount of rainfall (mm) has 

increased during recent decades, the rainy season often starts later and ends earlier, and 

there are many long dry spells. At the same time, rainfall is concentrated in fewer days, 

and heavy precipitations may occur, which can lead to flooding, dike breaches, brackish 

water entering the plots, and frequent harvest failures (Mendes and Fragoso, 2023). Thus, 

a high annual rainfall no longer guarantees a correspondingly high rice productivity. Until 

three decades ago, farmers used to sow the first nurseries between May and June, but 

today they have to wait until July or even August (Figure 3.4), depending on the location 

(Dossou-Yovo et al., 2022). Then, the MSRPS depends on the amount of accumulated 

rainfall in the paddies and good water management (Fandé et al., 2022; Santos and 

Mourato, 2022). Normally, soil tillage cannot begin until the paddies are sufficiently 

filled with rainwater (Figure 3.10) to leach or dissolve the salt, but according to soil 

consistency (Figure 3.9), it may not be necessary to wait until the plot is full of water. 

However, farmers drain the water (southern study site) in order to work the soil more 

easily and with less physical effort. However, the paddies must be filled with fresh water 

again so that rice can be transplanted or directly sown.  

Rice production requires greater adaptability due to rainfall patterns in GB, and 

agricultural practices in the MSRPS need to be adapted to biophysical characteristics 

(Figure 3.10). Farmers usually start their cultivation on the plots given to them by their 

families (grandparents or parents) for soil preparation and have significant practical 

knowledge of MSRPSs (Temudo, 1998). Many of these plots in both study sites (Figure 

3.1) were located near the mangrove boundaries (tidal mangroves), where they require 

higher soil moisture due to a high Na+ concentration (Table 3.2). Likewise, in many cases, 



112 

 

these sites had a clay texture and required higher rainfall in order to overcome the 

plasticity limit, and thus, facilitate soil tillage. With changing rainfall patterns and a short 

rainy season window, farmers need to adapt and start tilling on plots that require less 

rainfall or soil moisture, such as plots with a loam or sand texture (Unger, 1984). In this 

way, they can use these plots to plant nurseries and initiate the rice growth cycle since the 

species Oryza glaberrima and O. sativa require approximately 90 to 135 days from 

sowing to harvest (Linares, 2002; Miranda, 1993; Penot, 1992; Temudo, 2011; Tesio et 

al., 2021). This paper proposes an adaptation strategy that allows farmers to identify the 

sites where it is appropriate to initiate soil tillage (Figure 3.10). This will enable them to 

promote agriculture that is better adapted to rainfall patterns, which are likely to be more 

variable in the medium and long term. This is important for sustainable agriculture in GB 

given the climate variability (Temudo, 2011). 

The water management techniques used in Cafine-Cafal and Elalab differed (Figure 

3.5), but both had similar water-harvesting efficiencies (Figure 3.7). When analyzing the 

Elalab study site (“Diola” and “Baiote” systems), it was clear that there was a much higher 

concentration of plots in a single hectare than in the southern study site of Cafine-Cafal 

(“Balanta”) (Figure 3.6). The smaller paddies in the northern region (Elalab study site) 

allowed for better management of the scarce water supply. For example, the average rainfall 

in the 2021 and 2022 rainy seasons was 1454 mm in the Elalab study site and 2578 mm in 

Cafine-Cafal (Figure 3.4). These results are consistent with those of other researchers 

(Mendes and Fragoso, 2023). Although the plots may be larger in newly opened paddies, 

when Elalab farmers observed water accumulation in some areas, they divided them into 

two or more smaller plots (Figure 3.5). Smaller plots allowed for a more even distribution 

of water logging across the soil surface, both at the beginning and end of the rainy season 

(Figures 3.7 and 3.8). This meant that the desalinization of the paddies occurred more 
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evenly and the amounts of water within the plots could be controlled more efficiently 

(Baggie et al., 2018; Dossou-Yovo et al., 2022; van Oort, 2018). In contrast, Cafine-Cafal 

case study plots were seven times larger, and water management was less efficient despite 

the higher rainfall rates in the south of the country (Figure 3.6). This could lead to more 

heterogeneous runoff within plots, resulting in hot spots of salinization in the center of the 

paddies (Figure 3.8). 

The efficiency in the use of production space was also higher in the north of Guinea-

Bissau than in the south. The Elalab case study achieved greater homogeneity of their 

ridges and furrows by using smaller plots (Figure 3.5) because the length of the ridges 

was shorter compared with those in the south (“Balantas”). On small plots, ridge 

dimensions can be better controlled when farmers till the soil. Since the ridges cover a 

larger area, farmers in the north could use four planting holes per row, while in the south, 

they used three holes in a triangle. This meant that northern farmers (“Diolas” and 

“Baiotes”) were making better use of the area. In summary, the Elalab case study showed 

that the system had more efficient water management and labor use and was better 

adapted to water stress conditions. In the future, there is a possibility that the strategies 

implemented in the northern study sites will be effectively expanded to the southern 

regions and serve as an adaptive response to decreasing rainfall conditions.  

Plastic limits (PLs) determine the time at which tillage can begin in the MSRPS 

fields (Figure 3.9). Currently, the agricultural calendar has a shorter time window, and 

gravimetric soil moisture (θg) is a tool that can be used to help define the appropriate 

moment and plots to start soil tillage each year. For this purpose, maps were modeled to 

determine the paddy areas where producers could start soil preparation (Table 3.3) to take 

advantage of the longest period of favorable conditions (high salt solubility) in the plots 

(Figure 3.10). It was found that the Cafine-Cafal farmers could start soil preparation with 
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a θg = 36%, while in Elalab, approximately θg = 20% was required (Figure 3.9). These 

delineations provide farmers with valuable insights into the strategic management of soil 

friability and ensure avoiding soil sticking to the manual plows that are commonly used 

in MSRPS practices (Temudo, 2018, 2011; Tesio et al., 2021). This is consistent with 

previous studies on soil workability and friability for agricultural production, which aim 

to help farmers make decisions on tillage operations (Arvidsson and Bölenius, 2006; 

Keller et al., 2007; Keller and Dexter, 2012; Obour et al., 2017; Utomo and Dexter, 1981). 

Therefore, soil consistency is a tool to make soil management more efficient and achieve 

better water efficiency. However, it is the soil salinity that determines if it is possible to 

start planting or direct sowing immediately after plowing (Baggie et al., 2018; Bos et al., 

2006; Dossou-Yovo et al., 2022; Sylla et al., 1995). 

MSRPS infrastructures (bunds and dikes) are primarily designed for freshwater 

accumulation rather than salt removal or drainage. The vast majority of farmers only drain 

the water from the plots when they need to maintain a desired level of waterlogging 

according to the height of the rice plants. Nevertheless, farmers in the Elalab case study 

(“Diolas and Baiote”) prioritized plowing the soil under waterlogging conditions to 

conserve the limited water availability (Figure 3.7). In addition to the additional physical 

effort required for soil preparation, this practice allowed the dissolved salts to remain in 

the water. This is in stark contrast with conventional irrigation systems, where many water 

management calculations are designed to facilitate salt leaching and removal, particularly 

in systems characterized by low rainfall but with greater availability of freshwater from 

wells or rivers. Therefore, MSRPS cultivation in both the northern and southern regions 

of Guinea-Bissau presents complex variability in the biophysical characteristics of rice 

production areas, which pose major challenges. 
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6. Conclusions  

Rice production requires greater adaptability due to rainfall patterns in GB, and 

agricultural practices in the MSRPS need to be adapted to biophysical characteristics. The 

highly spatio-temporal variation in rainfall distribution has a major impact on the MSRPS 

soil tillage calendar. This paper proposes an adaptation strategy that allows farmers to 

identify the sites where they can initiate soil tillage. This will enable them to promote 

agriculture that is better adapted to rainfall patterns, which are likely to be more variable in 

the medium and long term. This is important for sustainable agriculture in GB given climate 

variability. 

It could be concluded that the water management techniques used in the north and 

the south of the country differed, but both had similar water-harvesting efficiencies. The 

smaller paddies in the northern region (Elalab study site) allow for better management of 

the scarce water supply. Smaller plots allow for a more even distribution of water depths 

across the soil surface, both at the beginning and end of the rainy season. This means that 

the desalinization of the paddies occurred more evenly and the amounts of water within 

the plots can be controlled more efficiently. In contrast, in the south, plots were seven 

times larger, and water management was less efficient despite the higher rainfall rates, 

which could lead to more heterogeneous runoff within plots, resulting in hot spots of 

salinization in the center of the paddies.  

Currently, the agricultural calendar has a shorter time window and gravimetric soil 

moisture (θg) is proposed as a tool to help determine the appropriate time and sites to start 

tillage each year. Soil consistency maps were modeled to determine the plots where 

producers could begin soil preparation to take advantage of the longest period of favorable 

conditions (high salt solubility) in the plots. These delineations provide farmers with 
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valuable insights into the strategic management of soil friability and ensure avoiding soil 

sticking to the plows that are commonly used in MSRPS practices.  

The comparative study of some biophysical properties between study sites 

facilitated the identification of specific constraints hindering rice growth and productivity 

due to salinity and water management. The key limitations identified that will guide our 

future research were as follows: (i) The lack of an effective drainage system in the plots 

resulted in the productivity of the plots relying solely on leaching and salt dissolution. (ii) 

Irregularities in the topography of the plots could lead to a heterogeneous accumulation 

of salts, leading to significant variability in rice production. (iii) Inadequate knowledge 

of the chemical composition of salts and the physical properties of soil hindered the ability 

to effectively address challenges related to managing soil alkalinity, toxicity, and acidity. 

The MSRPS lacked maps that provide information on initial salinity conditions, and the 

development of such resources could greatly improve decision-making processes, 

particularly during periods of low rainfall. (iv) The MSRPS did not have a water–salt 

balance that allowed for determining the optimal conditions for rice growth in both the 

initial and final growth stages.  
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1. Abstract 

Rice is one of the most important crops in many West African countries and has a direct 

impact on food security. Mangrove swamp cultivation is the most productive rice system 

in this area but is highly vulnerable to changes in rainfall patterns due to soil salinity. 

Diagnosing and identifying areas of high salinity concentration are essential strategies for 

adapting to climate change and mitigating its impacts. The aim of this study is to provide 

a methodological approach to identify the causes of soil salinity and map the spatial 

distribution of hypersaline areas, focusing on three case studies in Guinea-Bissau. At 

three study sites in the north, center, and south of the country, 382 soil samples were 

collected under initial conditions before rice cultivation. Indices derived from spectral 

bands and soil texture raster of the Planet Scope project were used to calibrate the three-

machine learning based models: Random Forest (RF), Support Vector Machine, and 

Convolutional Neural Networks. Chemical analysis of the soil revealed that Mg2+ and 

Na+ were the extractable cations with the highest concentration in all three study sites. 

The RF showed the highest accuracy for salinity prediction (R2 = 0.84, MAE = 13.35 dS 

m-1, RMSE = 20.89 dS m-1, NRMSE = 2 %, BIAS = 0.45, PBIAS = 0.04 %), with 

normalized difference salinity index (RNDSI, calculated with red edge). Silt raster, 

normalized salinity index (NDSI), and normalized difference water index (NDWI) were 

the main contributors in the predicted data for soil electrical conductivity of the saturation 

paste extract (ECe, (dS m-1). This approach produced a reliable approximation during 

validation for the three study sites (R2 = 0.71 to 0.81, MAE = 10.81 dS m-1 to 19.68 dS 

m-1, RMSE = 15.59 dS m-1 to 29.23 dS m-1, NRMSE = 36% to 51%, BIAS = -2.25 to 

1.79, PBIAS = -5.73% to 5.81%), each exhibiting unique edaphoclimatic characteristics. 

This study highlights the critical importance of diagnosing hypersaline sites to improve 

agronomic management practices by introducing improved water management 

infrastructures, conserving mangrove forests, and promoting regional ecological 

resilience. 
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2. Introduction 

Rice (Oryza sativa L. and Oryza glaberrima Steud.) is one of the most important 

staple foods in West Africa and plays a crucial role in the daily diet. In rural areas, it is 

mainly grown by smallholders (FAO, 2018). Rice production in West Africa occurs in 

four major agroecosystems (Balasubramanian et al., 2007) defined by their surface water 

regimes such as dryland ecosystems (after slash-and-burn of forests or woodlands), 

rainfed wetlands, deepwater, and mangrove swamps (after slashing the mangrove trees 

and dike building).  

In Guinea-Bissau (GB), the mangrove swamp rice production system (MSRP) 

accounts for about 49% of the crop production area (The Republic of Guinea-Bissau, 

2018). This system shows evidence of salinity as the land was formerly occupied by 

mangrove forests and is vulnerable to saline seawater intrusion (Linares, 1981; Ukpong, 

1997). Increased concentrations of soluble salts in the soil alter its physicochemical 

properties and increase the osmotic potential. Therefore, the ability of rice plants to absorb 

water is reduced, which in turn reduces the growth rate and ultimately leads to lower crop 

yields (Garbanzo et al., 2024a). Because rice is sensitive to salinity stress (Ayers and 

Westcot, 1985; Minhas et al., 2020), farmers rely on rainwater harvesting to dissolve and 

leach salts accumulated in the paddies to make the site productive (Dossou-Yovo et al., 

2022; Marius and Lucas, 1991). Recently, desalination of paddy fields has become 

increasingly difficult due to rainfall patterns affecting rice production (Mendes and 

Fragoso, 2024; Temudo et al., 2022). In Guinea-Bissau, salinity problems are mainly 

related to the hydro-saline balance, as salinity can affect both the beginning and the end 

of the rice growing season (D’Amico et al., 2024; Garbanzo et al., 2024b; Van Ghent and 

Ukkerman, 1993). However, salinity is not present in all plots and occurs mainly in the 
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plots near the mangroves (Garbanzo et al., 2024a), where poor drainage affects salt 

leaching.  

Poor diagnosis of saline sites hampers the development of agronomic management 

plans, which are essential to ensure rice production and avoid yield losses (Wolanski and 

Cassagne, 2000; Zenna et al., 2017). However, in GB, this diagnosis relies solely on 

farmers’ local knowledge and practices, some of which are poorly adapted to socio-

environmental changes (Martiarena and Temudo, 2023). Furthermore, few studies have 

been conducted to identify, characterize, and manage soil salinity in the MSRP, hindering 

the development of alternative management solutions namely under climate variability 

and climate change. For this reason, it is essential to develop tools tailored to the specific 

characteristics of MSRP fields to improve the diagnosis and management of salinity in 

this production system. 

Tools for managing salinity in agricultural systems can use different types of 

models, such as statistical and deterministic. Deterministic models provide precise and 

predictable insights, as reported by Ramos et al. (2024), Stulina et al. (2005), and Van 

Dam et al., (2008). However, their complexity and high data input requirements make 

them more suitable for research rather than practical management in regions with limited 

data and technical expertise. 

In contrast, machine learning-based statistical models show significant promise for 

diagnosing and managing salinity in mangrove rice fields (Sarkar et al., 2023; Xiong et 

al., 2024). These models handle complex relationships and large datasets, and provide 

accurate and adaptable predictions. Nevertheless, they face challenges related to data 

requirements, interpretability, and technical demands. Combining these models with local 
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knowledge and practices, as well as ensuring transparency and stakeholder engagement 

can enhance their effectiveness in salinity management. 

Using remote sensing images to feed machine-learning models for salinity 

management in the MSRP areas provides significant advantages in large-scale, high-

resolution monitoring and cost-effectiveness. Satellite platforms such as Sentinel 

(European Space Agency, European Union), Landsat (National Aeronautics and Space 

Administration Agency, USA), MODIS (National Aeronautics and Space Administration 

Agency, USA), PlanetScope (Planet, USA), and SAOCOM (National Commission for 

Space Activities, Argentina) capture multispectral reflected energy and enable diagnosis 

of surface properties, including vegetation changes, climatic variability, and soil 

composition (Wulder et al., 2022). These images enable non-intrusive observation of vast 

or inaccessible areas (Cawse-Nicholson et al., 2021; Salem et al., 2023). Calibration of 

spectral reflectance creates robust diagnostic tools for analyzing spectral patterns and 

changes over time (Martins et al., 2022; Pettorelli et al., 2005), crucial for informed 

agricultural decision-making and understanding of site-specific characteristics affecting 

crop production (Roy et al., 2019; Valman et al., 2024). 

Spectral reflectance has been extensively studied and calibrated to diagnose soil 

salinity in different agroecosystems using various algorithms (Hopmans et al., 2021; 

Ivushkin et al., 2019; Metternicht and Zinck, 2003). Commonly used satellite indices are 

the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Salinity 

Index (NDSI), the Intensity Index (Int), the Salinity Index on Spectral Angle Mapper 

(SAM), and the Salinity and Water Stress Index (SWSI), all of which are directly related 

to soil or vegetation (Lopes et al., 2020; Tan et al., 2023). These indices must be calibrated 

and validated with ground-truth salinity data to account for spatial variability and 

atmospheric disturbances (Hadjimitsis et al., 2010; Pettorelli et al., 2005), ensuring 



122 

 

accurate predictions (Liu et al., 2025; Ramos et al., 2020; Scudiero et al., 2015; Timm 

and McGarigal, 2012). Proper calibration enhances the assessment of spatial variations in 

soil salinity, which is crucial for effective management of agricultural systems (Bell et 

al., 2001; Ivushkin et al., 2019). 

Several machine-learning algorithms are nowadays available for calibrating indices 

with ground truth data to generate predictive models (He et al., 2023; Mondal et al., 2019; 

Naimi et al., 2021). Among the most popular are: (i) Random Forest (RF), an ensemble 

learning method that uses statistical classification and regression techniques and creates 

multiple decision trees with random variations to arrive at a single result (Breiman, 2001; 

Latifi et al., 2012; Liu et al., 2012); (ii) Support Vector Machine (SVM), also a supervised 

learning algorithm that uses regression and classification methods to try to find the most 

accurate hyperplane to classify various features (Cortes and Vapnik, 1995; Decoste and 

Schölkopf, 2002; Huan et al., 2009); and (iii) Neural Networks (NNs), which are more 

complex models inspired by the brain’s neurons and composed of layers with 

interconnected nodes, including an input layer, several hidden layers, and an output layer 

(Haykin, 1999; Rosenblatt, 1967). NNs establish an associated index or weight to form a 

classification, relying on training data to improve predictions through self-learning 

(Bishop, 1995; Farifteh et al., 2007). These algorithms enable the correlation of site 

variables with different spectral indices to determine a spatial prediction model that best 

fits the natural behavior of the data. 

Diagnosis of soil salinity using indices calculated from satellite imagery and 

environmental covariates has shown promising results through various supervised 

learning algorithms. These include attempts to use SVM to calibrate the indices using 

ground-truth soil salinity data (Abd El-Hamid et al., 2023; Liu et al., 2023; Yang et al., 

2023), RF (Kaplan et al., 2023; Yang et al., 2023; Zhao et al., 2023), and NNs (Pouladi 
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et al., 2019; Zhang et al., 2023). Other approaches included soil physical parameters such 

as soil moisture (Avdan et al., 2022), groundwater salinity (Chaaou et al., 2022), soil 

texture (Golabkesh et al., 2021; Hossain et al., 2020; Liu et al., 2023; Shi et al., 2022; Sun 

et al., 2022), and organic matter content (Shrestha et al., 2021) as variables; most of these 

models were developed for regions in Asia and the Middle East. However, no predictive 

model has been developed for the diagnosis of salt-affected soil in the tropical zones of 

West Africa (Mondal et al., 2019). Developing a model to diagnose soil salinity is 

essential to optimizing agricultural rice productivity, enabling precise resource 

management, and supporting sustainable land use. This will help ensure food security and 

environmental resilience to climate variability and change. 

The aim of the study is to characterize the cations that contribute to soil salinity, 

develop a predictive model to assess spatial distribution and provide recommendations 

for soil salinity management in mangrove swamp rice cultivation in Guinea-Bissau. This 

article describes the development of a tool leveraging a supervised machine learning 

algorithm, that integrates satellite imagery with ground truth data. This tool can be used 

with the same aim in other rice-producing areas with salinity problems and ultimately be 

adapted to help select sites for mangroves restoration activities. 
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3. Materials and methods 

3.1. Location and main characteristics of the study sites 

The research was conducted between 2021 and 2023 at the study sites of Elalab 

(12°14'48.5" N, 16°26'30.3"W), Enchugal (12°02'52.0" N, 15°26'06.9" W), and Cafine-

Cafal (11°12'40.4" N, 15°10'26.7" W) in Guinea-Bissau (GB), West Africa (Figure 4.1). 

The study sites are located in the coastal regions of Cacheu, Oio, and Tombali, where 

MSRP is practiced. Historically, farmers in the upper part of the catena began growing 

rice and gradually opened up new fields by clearing mangrove forests and building dikes 

and ducts. In the specialized literature (Van Ghent and Ukkerman, 1993), the agroecology 

of the upper fields is called associated mangroves (AM), and that of the fields closer to 

the brackish water is called tidal mangroves (TM)  (Garbanzo et al., 2024a). 

 

Figure 4.1. Location and perspective of soil salinity problems in (A) Elalab in the north, 

(B) Enchugal in the central region, and (C) Cafine in the south of Guinea-

Bissau, West Africa.  
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According to the Köppen – Geiger classification, the climate is tropical monsoon 

(AW), which indicates heavy rainfall during the rainy season (Beck et al., 2018). In 

addition, the Holdridge Classification (Harris, 2014; Holdridge, 1947) identifies two life 

zones: the southern part (Cafine-Cafal) is classified as tropical moist forest, while the 

central (Enchugal) and northern (Elalab) regions are tropical dry forests. Currently, 

rainfall usually begins in June and ends by late September or October, with average 

annual ranging between 1500 mm (North) and 2500 mm (South) (Mendes and Fragoso, 

2024). Average annual temperatures vary between 24 °C and 27 °C, with temperature 

patterns showing minimal annual fluctuations (Garbanzo et al., 2024b).  

Soil consists primarily of alluvial deposits resulting from sedimentation caused by 

tidal channels extending into the continent. Their dynamics are influenced by active 

oxidation-reduction processes, mainly caused by tidal effects, particularly in mangrove 

areas, combined with the accumulation of freshwater during the rainy season. These soils 

have an ustic moisture regime, characterized by over 90 consecutive dry days in typical 

years (Soil Survey Staff., 2022). 

The MSRP agroecosystem is a type of rainfed wetland rice ecosystem that is 

particularly vulnerable to both drought and flooding (Balasubramanian et al., 2007). Soil 

salinity limits rice production because optimal plant development only occurs under 

conditions of sufficient freshwater storage and minimal salt concentration within the 

plots. Originally, the soils were tidal terraces with mangrove forests, which were 

converted into rice fields by anthropogenic activities. Farmers adopt strategies to prevent 

saltwater intrusion by building a primary dike, followed by bunds to retain freshwater, 

thus facilitating desalination of the plots (Garbanzo et al., 2024b; Linares, 1981). Over a 

period of two to five years, these areas are desalinated and become productive for rice 

cultivation. However, tidal influence affects drainage conditions and salt accumulation in 
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the lower plots. In addition, farmers used to allow brackish water to enter the TM fields 

during the dry season to increase soil fertility, reduce the development of soil toxicity, 

and control weeds’ infestation and pests’ attacks. Currently, this practice is seldom used 

due to the extreme irregularity of the rainfall regime, which no longer allows the 

dissolution and drainage of saltwater before rice cultivation. Furthermore, extreme 

rainfall events and strong tides coupled with sea-level rise result in dike breaches and 

brackish water intrusion into fields (Mendes and Fragoso, 2023). 

3.2. Field data collection and analysis  

Due to logistical challenges posed by the distances between villages and the time 

required to collect soil samples in rice fields, soil sampling was conducted in different 

years. Therefore, sampling was carried out in Cafine-Cafal and Elalab in 2022 and in 

Enchugal in 2023. Soil samples (n = 382) were collected using an auger at depths of 0–

25 cm within the paddy fields (Figure 4.A1), corresponding to a sampling area of 1820 

ha (Garbanzo et al., 2024b). The sampling was carried out before the start of the rainy 

season (May-June), to quantify the initial salinity conditions before the start of rice 

production activities. The soil particle size distribution was determined using the 

hydrometer method (Bouyoucos, 1926; Day, 2015; Soil Survey Staff, 2022) according to 

USDA particle size limits. Soil pH (H2O) and electrical conductivity (EC) were measured 

on a suspension of soil and distilled water (1:2.5 w/v soil/solution) using the 

potentiometric method (Rhoades, 1996; Thomas, 1996). In addition, the Mehlich-3 

method (Zhang et al., 2014) was used to quantify the extractable concentrations of Ca2+, 

Mg2+, Na+ (cmol(+) L-1). Cation concentrations were measured using inductively coupled 

plasma mass spectrometry (Wilschefski and Baxter, 2019). 
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The EC was the converted from the laboratory-estimated solution (EC1:2.5, dS m-1) 

to the saturated soil paste extract (ECe, dS m-1). This conversion was necessary because 

ECe serves as a standard indicator for assessing soil salinity and provides a consistent 

interpretation over time and space (U.S. Salinity Laboratory Staff, 1954). The following 

equation was used (Sonmez et al., 2008): 

Fine textures 𝐸𝐶𝑒 = 3.68 𝐸𝐶1:2.5 + 0.22  Eq. 4.1.1 

Coarse textures 𝐸𝐶𝑒 = 4.34 𝐸𝐶1:2.5 + 0.17  Eq. 4.1.2 

Medium textures 𝐸𝐶𝑒 = 3.84 𝐸𝐶1:2.5 + 0.35  Eq. 4.1.3 

 

3.3. Compilation of remote sensing data 

The satellite imagery data used in this study was downloaded from the Planet Scope 

Project (Planet Labs PBC, 2024) with atmospheric corrections already applied to surface 

reflectance. The sensor operates with a spatial resolution of 3 m x 3 m, daily temporal 

data and captures spectral information across bands from B1 to B8. Images taken between 

May 10th and 25th, 2022, were selected for the Elalab and Cafine-Cafal sites. For the 

Enchugal site, images between May 10th and 25th, 2023 were selected. The selection 

process focused on identifying images without cloud cover or traces of Sahara Desert 

particles. These images were viewed on the PlanetScope platform website. One image 

per study site was downloaded to cover the entire study area. These images represent the 

initial state of soil salinity before the onset of rainfall and rice production in GB. The 

images were then stored in a designated asset repository on the “Google Earth Engine” 

platform and subsequently accessed in the “Google Collaboratory” environment via the 

“Geemap” library. The Python programming language version 3.11 (Van Rossum and 
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Drake, 2009) was used via the “Google Collaboratory” interface for image processing, 

spectral band extraction, and algorithm training. 

4. Theory and Calculation 

Figure 4.2 describes the modeling approach used in this study, which involves 

identifying vegetation indices and particle size classes that best correlate with the ECe 

ground truth data, as well as generating machine learning models using three different 

algorithms (Random Forest, RF; Support Vector Machine, SVM; and Convolutional 

Neural Network, CNN), and the validation of modeling results for soil salinity assessment 

in Elalab, Enchugal and Cafine-Cafal using different goodness-of-fit indicators. The 

following sections describe the procedures in detail. 
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Figure 4.2. Generalized flowchart describing the computational procedures for 

developing predictive models (Random Forest, RF; Support Vector Machine, 

SVM; and Convolutional Neural Network, CNN) and diagnosing soil salinity 

in relation to soil texture within the MSRP in GB (ECe = electrical conductivity 

of saturation paste extract in dS m-1; MAE = mean absolute error; RMSE = root 

mean square error; ρ = Pearson’s correlation coefficient; R2 = coefficient of 

determination; BIAS;  PBIAS = percentage BIAS; LOOCV = Leave-One-Out 

Cross Validation). 
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4.1.  Data preparation and models training 

4.1.1. Interpolation of textures and raster generation  

The Geoestatistics for Environmental Science (GS+) software was used to map the 

soil texture in the study areas. The semivariograms were fitted to the measured 

proportions of sand, silt, and clay to determine the spatial correlation between the sampled 

points and to obtain the parameters necessary to predict soil texture at unsampled sites 

(Table 4.A1). Subsequently, the ordinary Kriging method (Ahmed and De Marsily, 1987) 

was used for the interpolation process. Spatial autocorrelation analysis was then applied 

using the “Global Moran´s Index” statistic. Z-score calculations and derived p-values for 

each soil texture class were performed to determine statistical significance. 

Geostatistical analysis tools were used to validate soil texture maps using 

resampling techniques, particularly Leave-One-Out cross-validation (LOOCV). The root 

mean square error (RMSE), the mean absolute error (MAE), and the Pearson´s correlation 

coefficient (ρ) were calculated to validate all interpolated maps according to the 

recommended methodology (Chuvieco, 2020). The resulting interpolation (raster) was 

integrated into the machine learning models as a predictor (Figure 4.2). Four raster of soil 

texture analyses were performed using the geostatistical module in ArcMap 10.8.2. 

4.1.2.  Use of buffering  

Buffers were used to standardize the areas of analysis, and average values were 

extracted from each buffer area. This method captures spatial variability more effectively 

because a single pixel (3 m x 3 m) may not accurately represent the existing spatial 

variability in a paddy field. To this end, data on field dimensions derived from the 

biophysical characterization of the MSRP (Garbanzo et al., 2024b) was used to determine 

an approximate radius for all sites. The buffer size for the MSRP analysis was based on 



131 

 

the dimensions of the smallest plot within the rice fields, which was approximately 6 m 

long. This approach follows the methodology used in soil salinity diagnosis (Wu et al., 

2018). To cover an area of approximately 111.26 m2, a circular buffer with a radius of 6 

m, divided into five segments, was used. This data homogenization method effectively 

approximates the information derived from multiple pixels within an image. The buffer, 

which covers a larger area and represents approximately 13 pixels, provides a more 

comprehensive representation of spatial data. As a result, the information within the 

analysis domain was standardized using ground truth data, with averages extracted from 

each band or rasters layer used.    

4.1.3. Band and index selection 

The selected bands and indices were based on various studies developed worldwide 

(Abd El-Hamid et al., 2023; Aksoy et al., 2022; Barreto et al., 2023; Bouaziz et al., 2018; 

Chaaou et al., 2022; Dakak et al., 2023; Golabkesh et al., 2021; Li et al., 2022; Mzid et 

al., 2023; Shi et al., 2022; Tan et al., 2023; Triki Fourati et al., 2017; H. Zhang et al., 

2023; Zhou et al., 2022), and are defined in Appendix Table 4.B2. The formulas of the 

various indices were programmed directly into the “Google Collaboratory” platform, 

which provides access to the “Jupyter Notebook Environment”. Google Collaboratory 

was used to access GPU and TPU servers, providing greater analytical power for the 

machine learning models.  

The satellite bands extracted by the Planet Scope sensor, namely B1 (Coastal Blue; 

431 – 452 nm), B2 (Blue; 465 – 515 nm), B3 (Green I; 513 – 549 nm), B4 (Green; 547 – 

583 nm), B5 (Yellow; 600 – 620 nm), B6 (Red; 650 – 680 nm), B7 (Red Edge; 697 – 713 

nm), and B8 (Near-infrared; 845 – 885 nm), were also integrated as raster variables 

following the methodology described by Chuvieco (2020). This process was performed 
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using JavaScript and integrated into the Google Engine to generate an asset and 

standardize the file format (compatibility) for execution in the simulated model on Google 

Collaboratory. 

Preliminary selection of spectral bands and indices was done using Pearson 

correlation, using a threshold ρ greater than 0.30. Bands and indices were tested against 

ECe ground truth data. This process allowed the elimination of indices with limited 

significance for salinity diagnosis and the avoidance of overfitting. Filtering involved 

selecting the best correlated indices with a significant relationship to ECe (in Appendix 

Table 4.C3 and Figure 4.D1).  

4.1.4. Machine learning model selection and calibration 

Soil salinity within the MSRP in GB was modeled using three algorithms: Random 

Forest (RF), Support Vector Machine (SVM), and Convolutional Neural Networks 

(CNN). The variables included were the bands, selected indices, and the soil texture 

raster. The data was split into a training set (80%) and a test set (20%) using the “train-

test split” method. The dataset for this study totaled 5730 units (382 ECe ground truth 

data multiplied by 15 variables representing satellite indices (11) and soil texture data (4) 

(in appendix Figure 4.E2). Predictors were scaled using “StandarScaler” to normalize 

training and testing values. This standardization is a requirement for machine learning 

algorithms (which assume zero mean and unit variance) because they may not perform 

optimally if the predictors are not approximately normally distributed (Geron, 2019; 

Kuhn and Johnson, 2013).  

The RF model used the ensemble regression tree method developed by Breiman 

(2001), which is widely used in the literature to identify salt-affected areas (Cui et al., 

2023; Li et al., 2022; Periasamy et al., 2022; Tan et al., 2023; Wang et al., 2021). Equation 
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4.2 was used to calculate the prediction y of RF for data point x; where B represents the 

total number of trees in the forest, and Tb(x) is the prediction of the b-th tree for the input 

x.  

y(x) =
1

B
∑ Tb(x)

B

b=1

 

Eq. 4.2 

Each tree provides an independent prediction, and the final output is the average of 

these predictions, reducing variance and improving the accuracy of the models. 

Therefore, the number of trees and splits (ntree and mtry) required for training needs to 

be adjusted.  

The model was programmed using standard tree generation, with interactions tested 

at 50-unit intervals ranging from 100 to 2000 trees. The optimal number of trees was 

determined using the “GridSearchCV” function (Siji and Sumathi, 2020) from the 

“Sklearn library”. Since RF integrates regression from the decision trees created, it then 

provides an average of the value index in the most accurate output prediction. Based on 

the bootstrap theory, each output of decision trees randomly selects training samples 

during growth. This approach enables high-precision analysis by including many input 

samples without reducing dimensionality. Further details can be found in Breiman (2001). 

In the current study the RF regressor was calibrated with two splits, 100 trees, 27 random 

states, and root mean square error as the criterion calculated in each analysis run.  

The SVM-supervised learning algorithm serves as a tool for predicting continuous 

output variables based on a comprehensive set of input data features (Boser et al., 1992; 

Cortes and Vapnik, 1995). The aim of this method is to identify a function that predicts a 

continuous variable within a defined margin of error, which is set to epsilon of 0.1 in the 

SVM model. This tool is adjusted based on training data to maximize the prediction 
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margin and minimize modeling errors (Decoste and Schölkopf, 2002; Huan et al., 2009). 

SVM was accessed using Equation 4.3, where 𝛼𝑖 are the Lagrange multipliers, which are 

non-zero for support vectors; 𝑦𝑖 are the labels of the training data; 𝑥𝑖 are the support 

vectors (training data points that contribute to the model);  𝐾(𝑥𝑖 , 𝑥) is the RBF kernel 

used to calculate the dot product in a higher-dimensional space (See Eq. 4.4);  𝛾 is a 

parameter that determines how quickly the value of kernel decreases with an increase in 

the distance between the support vector 𝑥𝑖 and the input point 𝑥; and 𝑏 is the BIAS term 

used in the function.  

f(x) = ∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥) +

𝑛

𝑖=1

𝑏 

Eq. 4.3 

𝐾(𝑥𝑖, 𝑥) = (−𝛾 (𝑥𝑖 − 𝑥)2) 

Eq. 4.4 

SVM allows the nature of the input data to be mapped into a higher dimensional 

space, enabling the capture of complex patterns in the data. More details on solving 

optimization problems in soil salinity prediction can be found in the literature (Periasamy 

et al., 2022; Venugopal et al., 2023; Xiao et al., 2023). The SVM model was programmed 

in Python from the “Scikit-learn” library. It was initialized with a kernel radial basis 

function (rbk), a margin of tolerance where no penalty is given to errors of 0.1 (epsilon), 

parameter for the kernel function of 0.01 (coef), size of kernel cache of 200 (cache size), 

regularization parameter of 1.0, maximum number of interventions for optimization of -

1 (no limit), and tolerance for the stopping criterion of 0.001.  

CNN was used in the current study with the aim of improving the efficiency in 

effectively capturing local and spatial predictors, which is crucial for accurate regression 

tasks (Goodfellow et al., 2016; LeCun et al., 2015). CNNs use convolutional operations 
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to process spatial data that apply a pooling function to reduce dimensionality while 

preserving the most relevant predictor from the input data (Goodfellow et al., 2016). The 

convolutional operation applies a filter or kernel to the input to generate a predictor map 

that enables the detection of increasingly complex patterns across different network layers 

(Krizhevsky et al., 2017). This convolution is successively applied by the deep layer of 

the neural network, facilitating the transfer of learning from the initial layer to the output 

layer (Simonyan and Zisserman, 2014; Zeiler and Fergus, 2013). For regression purposes, 

CNN are particularly useful in mapping input data to continuous output values, where the 

translational invariance of predictors enables robust predictions (Pongrac and Gleich, 

2021; Zhang et al., 2022). This approach significantly reduces the number of required 

parameters and increases the accuracy of continuous value prediction (Goodfellow et al., 

2016; Simonyan and Zisserman, 2014).  

In the current study, a one-dimensional CNN was used and programmed using the 

“PyTorch” library (Ansel et al., 2024; Howard and Gugger, 2020). Data frames were 

created with the selected indices and ECe. The CNN architecture included a 1-D 

convolutional layer and eight fully connected layers, each with 78 neurons (See Appendix 

F). The first estimation of the hyperparameters was performed using the “GridSearchCV” 

function (Siji and Sumathi, 2020) from the “Sklearn library”. The function optimizes the 

parameters of the estimator through a cross-validated grid search over a given parameter 

grid (Buitinck et al., 2013; Pedregosa et al., 2011). The model was then manually fitted 

by analyzing the loss function plot and calculating the selected goodness-of-fit indicators 

(Section 3.2) from the observed data compared with the predicted data to achieve a more 

accurate fit to the training data. In addition, it included 34 batch normalization layers and 

a dropout layer with a rate of 1.0 × 10−3 to prevent overfitting. Structural stabilization 

was achieved with a hidden size of 78 and 32 epochs. An “Adagrad” optimizer with a 
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learning rate of 2.37 × 10−2 and a regularization parameter of 1 × 10−2 was also used. 

The loss function was programmed using “SmoothL1Loss”, which was carefully 

monitored during training.   

4.1.5. Evaluation of the performance of the salinity prediction model  

Several goodness-of-fit indicators were used to assess the performance of the model 

considering both the “testing data” and “all predicted data”. These included the root mean 

square error (RMSE, dS m-1), the root mean square error normalized by the mean of the 

observations (NRMSE, %), the mean absolute error (MAE, dS m-1), the Pearson correlation 

coefficient (ρ), the coefficient of determination (R2), the average direction and magnitude 

of the systematic error represented by the BIAS, and the percent bias (PBIAS, %) which 

measures the average tendency of the estimates to be larger or smaller than the 

corresponding ones observed (Hodson, 2022; Paredes et al., 2018; Plevris et al., 2022; 

Steurer et al., 2021). Additionally, the ratio of performance to interquartile error range 

(RPIQ) were used as a robust metric for evaluate model accuracy. RPIQ emphasizes the 

reliability of predictions withing the central 50% of observed data, following the 

methodology of Bellon-Maurel et al., (2010); Krause et al., (2005). These metrics were 

used to validate texture raster interpolation maps, to adjust hyperparameters in RF, SVM, 

and CNN, and evaluate model performance in predicting soil salinity in the study sites.  

For the superior accuracy algorithm (RF in this study), the percentage importance 

of each variable was estimated (Figure 4.E2). The predictor importance was calculated 

by assessing how much each predictor contributed to reducing the mean squared error 

(MSE) in the predicted data (Breiman, 2001). This process, also referred to as impurity 

reduction, quantifies the importance of each predictor by assessing the reduction in 

impurities, particularly the reduction in MSE (Louppe et al., 2013). It occurs when a 
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predictor is used to split a node in the decision trees. The cumulative reduction in MSE 

for each predictor is then calculated for all trees and nodes in the RF. This value is 

normalized to obtain the predictor importance, which reflects how much each predictor 

contributes to reducing the overall prediction error in the RF model (Buitinck et al., 2013; 

Pedregosa et al., 2011).  

Redundancies in the model were assessed manually for each predictor (in appendix 

Figure 4.D1). To achieve this, the RF model was re-run, excluding individual predictors 

(see appendix Figure 4.E2). Since each predictor contributed significantly to the model, 

its absence from the model inputs reduced the optimal goodness-of-fit indicators (highest 

R2 values, and lowest values of MAE, RMSE, BIAS, and PBIAS) achieved in this study 

(Table 4.1). To identify statistical differences in Ca+, Mg2+, Na+, and ECe concentrations 

between study sites analysis of variance was also performed, followed by Tukey´s 

multiple comparison test (α= 0.05) (Tukey, 1949). Metrics were calculated at each 

programming step using Python, while additional statistical analyses were performed 

using R software version 2024.04.1 (R Core Team, 2024). Finally, soil salinity mapping 

was created using QGIS version 3.28 (QGIS Development Team, 2024).  



138 

 

5. Results 

5.1. Soil salinity in the study sites 

The village of Elalab exhibited significantly (α= 0.05) higher ECe values than the 

other sites, averaging 82.1 dS m-1, with a range from 0.4 to 228.7 dS m-1 (Figure 4.3). The 

lowest ECe values were reported at Cafine-Cafal, averaging 30.8 dS m-1 and ranging from 

0.5 to 150.9 dS m-1. Sodium was found to be the main cation influencing soil salinity, 

with extractable concentrations ranging from 0.1 - 173 cmol(+) L-1 in Elalab, 0.2 - 122.4 

cmol(+) L-1 in Enchugal, and 0.3 - 99.3 cmol(+) L-1 in Cafine-Cafal. Magnesium also 

displayed a pronounced distribution, particularly in the village of Elalab and the specific 

location of Enchugal, with the highest concentrations reaching 41 cmol(+) L-1. This 

underscores the significant influence of Na+ and Mg2+ on hypersaline zones in the MSRP 

of GB.  
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Figure 4.3. Concentration of extractable Ca+, Mg2+, and Na+, and electrical conductivity 

of the saturation paste extract (ECe) in the study sites of Elalab, Enchugal, and 

Cafine-Cafal, Guinea-Bissau. * Different letters indicate statistically 

significant differences (α= 0.05) according to Tukey´s test.  

The data density, as assessed from the samples analyzed across the three study sites, 

exhibited considerable variability depending on the geographical location of the sampling 

sites (Figure 4.4). The Cafine-Cafal and Enchugal sites showed similar clay contents 

across all sampling locations. In contrast, Elalab was characterized by lower clay 

contents. In the Cafine-Cafal and Enchugal, silt showed notably higher data density 

between 20% and 60%. Thus, MSR fields exhibit similar distribution patterns for the 

diverse texture in Enchugal and Cafine-Cafal, while in Elalab fields a more homogeneous 

distribution of their physicochemical characteristics occurred (Figure 4.3).  
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Figure 4.4.  Kernel density estimation for data on clay (A), silt (B), and sand (C) 

percentage analyzed in the study sites of Cafine-Cafal, Elalab, and Enchugal in 

Guinea-Bissau. 

Analysis of the MSRP soil textures at the study sites revealed that Elalab soils were 

characterized by a higher sand content than Enchugal and Cafine-Cafal, where medium, 

medium-fine and fine textures predominated (Figure 4.5). However, there were also many 

locations in Elalab with medium (loam) and medium fine textures (loam silt and silty 

loam). When the ECe values are plotted into the texture diagram, it becomes clear that 

higher ECe values are mainly found in medium fine texture soils. 
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Figure 4.5. Soil particle (clay, silt, sand) (A) and ECe (B) distribution in the texture 

triangle. 

5.2.  Selection of salinity predictors 

Redundancies were identified when a large number of predictors were used in this 

study (Table 4.1). The exclusion analysis revealed that removing indices with lower 

correlation with ECe had no impact on the maximum metrics achieved during model 

training. However, excluding indices with higher correlation with ECe significantly 

changes all goodness-of-fit metrics (R2= 0.26, MAE = 32.69 dS m-1, RMSE = 45.44 dS 

m-1, NRMSE = 102%, BIAS = -0.18, and PBIAS = -0.41%). This pattern was also 

observed when using all texture rasters. Combining of all soil texture raster with the best 

indices significantly improved the model metric (R2= 0.59, MAE = 23.02 dS m-1, RMSE 

= 33.89 dS m-1, NRMSE = 76%, BIAS = -1.95, and PBIAS = -4.39%). However, some 

texture rasters exhibited similar behaviors, which led to redundancies in the predictions. 

This issue was particularly evident when the best indices and texture raster were modeled 

individually. While the use of silt and clay rasters showed sufficient precision (R2= 0.58, 

MAE = 23.38 dS m-1, RMSE = 34.01 dS m-1, NRMSE = 77%, BIAS = -2.45, and PBIAS 
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= -5.53%), they tended to overestimate salinity by associating a high ECe value to all sites 

with high clay content. This observation was confirmed through map interpolation using 

two texture rasters, which incorrectly identified high ECe locations where such conditions 

did not exist. For this reason, the decision was made to use only one raster to enhance the 

accuracy of the salinity map predictions. Therefore, a combination of indices and texture 

rasters used in this study, which achieved optimal goodness-of-fit indicators in terms of 

BIAS and PBIAS was used in this study (R2= 0.53, MAE = 26.79 dS m-1, RMSE = 36.14 

dS m-1, NRMSE = 81%, BIAS = -0.26, and PBIAS = -0.59%). These predictors were 

selected because during the training phase showed the highest accuracy in the data set.   

At the MSRP sites in GB, three satellite indices showed the highest correlation (0.34 

– 0.51) with the ground-truth ECe (Figure 4.6). These indices were the normalized 

difference salinity index (RNDSI) calculated with Red Edge (Band 4.7), normalized 

difference salinity index (NDSI), and normalized difference water index (NDWI). The 

respective formulas/definition and selection criteria can be found in the appendix (Table 

B2 and Table C3). The data showed positive correlations for RNDSI, NDSI, and NDWI. 

Furthermore, the silt raster showed a correlation with the ground-truth ECe, with a 

correlation coefficient of 0.10. This indicates a low direct correlation with soil salinity, 

compared to the sand raster (0.23) and clay raster (-0.43).   
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Figure 4.6. Pearson correlation coefficients between selected variables and ground-truth 

ECe (dS m-1).  
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Table 4.1. Impact of excluding predictors on RF model and optimum goodness-of-fit 

indicators achieved in the training data set.  

Indices included in the 

model 

Indices excluded 

from the model 
R2 

MAE 

(dS m-1) 

RMSE 

(dS m-1) 

NRMSE 

(%) 
BIAS 

PBIAS 

(%) 

Exclusion of individual indices 

All Indices - 0.44 27.89 39.42 89 -0.29 -0.65 

RNDSI, RNDVI, NDSI, 

NDWI, SAVI, YRNDSI, 

NDVI, YRNDVI, GRVI, 

GCVI 

GNDVI 0.46 27.70 38.85 88 -0.13 -0.29 

RNDSI, RNDVI, NDSI, 

NDWI, SAVI, YRNDSI, 

NDVI, YRNDVI, GRVI 

GNDVI, GCVI 0.46 27.41 38.78 87 -0.38 -0.86 

RNDSI, RNDVI, NDSI, 

NDWI, SAVI, YRNDSI, 

NDVI, YRNDVI 

GNDVI, GCVI, GRVI 0.45 27.62 38.90 88 -0.30 -0.67 

RNDSI, RNDVI, NDSI, 

NDWI, SAVI, YRNDSI, 

NDVI 

GNDVI, GCVI, GRVI, 

YRNDVI 
0.46 27.47 38.81 87 -0.67 -1.50 

RNDSI, RNDVI, NDSI, 

NDWI, SAVI, YRNDSI 

GNDVI, GCVI, GRVI, 

YRNDVI, NDVI 
0.45 27.65 38.11 88 -0.69 -1.56 

RNDSI, RNDVI, NDSI, 

NDWI, SAVI 

GNDVI, GCVI, GRVI, 

YRNDVI, NDVI, 

YRNDSI 

0.45 28.04 39.19 88 -0.35 -0.78 

RNDSI, RNDVI, NDSI, 

NDWI  

GNDVI, GCVI, GRVI, 

YRNDVI, NDVI, 

YRNDSI, SAVI 

0.44 28.15 39.54 89 -0.27 -0.60 

RNDSI, RNDVI, NDSI 

GNDVI, GCVI, GRVI, 

YRNDVI, NDVI, 

YRNDSI, SAVI, 

NDWI 

0.26 32.69 45.44 102 0.18 0.41 

RNDSI, RNDVI, NDWI 

GNDVI, GCVI, GRVI, 

YRNDVI, NDVI, 

YRNDSI, SAVI, NDSI 

0.31 31.05 43.84 99 -0.72 -1.62 

RNDSI, NDWI, NDSI 

GNDVI, GCVI, GRVI, 

YRNDVI, NDVI, 

YRNDSI, SAVI, 

RNDVI 

0.45 27.98 39.18 88 -0.41 -0.92 

RNDSI, NDWI, NDSI, 

SAVI 

GNDVI, GCVI, GRVI, 

YRNDVI, NDVI, 

YRNDSI, RNDVI 

0.46 27.63 38.80 87 -0.53 -1.19 

RNDSI, NDWI, NDSI, 

SAVI, NDVI 

GNDVI, GRVI, GCVI, 

YRNDVI, YRNDSI, 

RNDVI 

0.47 27.44 38.47 87 -0.64 -1.44 

RNDSI, NDWI, NDSI, 

NDVI 

GNDVI, GRVI, GCVI, 

YRNDVI, YRNDSI, 

RNDVI, SAVI 

0.46 27.62 38.66 87 -0.52 -1.17 

RNDSI, NDWI, NDSI, 

NDVI + all soil texture 

raster 

GNDVI, GRVI, GCVI, 

YRNDVI, YRNDSI, 

RNDVI, SAVI 

0.60 22.83 33.47 75 -1.82 -4.10 

RNDSI, NDWI, NDSI + 

all soil texture raster 

GNDVI, GRVI, GCVI, 

YRNDVI, YRNDSI, 

RNDVI, SAVI, NDVI 

0.59 23.02 33.89 76 -1.95 -4.39 

RNDSI, NDWI, NDSI, 

SAVI, NDVI + all soil 

texture raster 

GNDVI, GRVI, GCVI, 

YRNDVI, YRNDSI, 

RNDVI 

0.60 22.64 33.12 75 -1.96 -4.42 

 

** Table is continuing in the next page. 

 

 



145 

 

Indices included in the 

model 

Indices excluded 

from the model 
R2 

MAE 

(dS m-1) 

RMSE 

(dS m-1) 

NRMSE 

(%) 
BIAS 

PBIAS 

(%) 

Best indices achieved + exclusion of individual soil texture 

Indices + soil texture 

included 

Soil texture raster 

excluded 
      

RNDSI, NDWI, NDSI, silt 

raster, Clay raster, Clay+Silt 

raster 

Sand raster 0.59 22.87 33.72 76 -2.56 -5.77 

RNDSI, NDWI, NDSI, silt 

raster, Clay raster 

Sand raster, Clay + 

Silt raster 
0.58 23.38 34.01 77 -2.45 -5.53 

RNDSI, NDWI, NDSI, Silt 

raster 

Sand raster, Clay + 

Silt raster, Clay 

raster 

0.53 26.79 36.14 81 -0.26 -0.59 

RNDSI, NDWI, NDSI, Clay 

raster 

Sand raster, Clay + 

Silt raster, Silt raster 
0.53 24.44 36.16 82 -3.19 -7.19 

RNDSI, NDWI, NDSI, Clay 

+ Silt raster 

Sand raster, Silt 

raster, Clay raster 
0.50 25.84 37.30 84 -1.12 -2.53 

RMSE = root mean square error. NRMSE = Normalized root mean square error. MAE = mean absolute 

error in dS m-1. PBIAS = Percent Bias. p = Pearson’s correlation coefficient. R2 = coefficient of 

determination. Observations = 382. Samples used to train the model = 305. N. testing data = 77. Index and 

rasters used = 15. n. matrix = 5730. Red Number indicates lowest accuracy. Bold numbers indicate the best 

goodness-of-fit achieved. 

5.3.  Soil salinity models 

The RF algorithm accurately predicted ECe using three satellite indices (RNDSI, 

NDSI, NDWI) and a silt raster (Table 4.2). When analyzing the training data for the RF, 

SVM, and CNN models, all models achieved a Pearson correlation coefficient exceeding 

0.67 (strong to high correlation (Taylor, 1990)). However for this study, the model with 

the highest R2 (0.84), and ratio of performance to interquartile range (RPIQ = 2.53), 

lowest NRMSE (2 %), BIAS (0.45), and PBIAS (0.04%) (Table 4.1), was considered the 

best model. Therefore, the RF model has the highest precision and accuracy (R2 > 0.84) 

in predicting ECe (MAE = 13.35 dS m-1, RMSE = 20.89 dS m-1), with a Pearson 

correlation (ρ) of 0.91 and a high RPIQ of 2.53. Finally, the low positive BIAS in the RF 

resulted in slight overfitting, reflected in a PBIAS of 0.04% across the predicted data set. 

This indicates a systematically low percentage of overestimations in the prediction model 

results (Figure 4.7A).   
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Table 4.2. The accuracies of the models in RF, SVM, and CNN for Leave-One-Out Cross 

Validation were used to predict ECe in Elalab, Enchugal, and Cafine-Cafal in 

Guinea-Bissau, West Africa. 

Models 
ρ R2 

MAE 

(dS m-1) 

RMSE 

(dS m-1) 

NRMSE 

(%) 
BIAS 

PBIAS 

(%) 
RPIQ 

  

RF 0.73 0.53 26.79 36.14 81 -0.26 -0.59 1.43 

SVM 0.67 0.16 32.63 48.19 109 -12.05 -27.17 1.07 

CNN 0.70 0.43 25.87 39.93 90 -10.71 -24.15 1.27 

   

RF 0.91 0.84 13.35 20.89 2 0.45 0.04 2.53 

SVM 0.59 0.12 29.70 45.86 98 -13.47 -28.78 1.16 

CNN 0.70 0.43 22.89 37.40 81 -10.37 -22.39 1.38 

RMSE = root mean square error. NRMSE = Normalized root mean square error. MAE = mean absolute 

error. PBIAS = Percent Bias. ρ = Pearson’s correlation coefficient. R2 = coefficient of determination. RPIQ 

= ratio of performance to interquartile range. RN = Random Forest. SVM = Support Vector Machine. CNN 

= Convolutional Neural Networks. Observations = 382 soil samples. Samples used to train the model = 

305. N. testing data = 77. Soil texture raster used = 1. Satellite indices used = 3. Total n. matrix = 1528.  

Silt raster contributed significantly to the prediction of soil salinity in the three study 

areas (Figure 4.7B). When evaluating the importance of the indices’ for predictions, 

RNDSI and Silt raster emerged as the primary contributors for model calibration, 

explaining 18.6% – 47.2%. In addition, NDSI and NDWI individually contributed 17.4% 

and 16.8% respectively. These findings underscore the potential of these indices as 

valuable tools for predicting soil salinity in the three GB regions within the MSRP.    
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Figure 4.7. Scatterplot between observed and predicted values in ECe and percentage of 

index importance in predictions generated by RF in the Elalab, Enchugal, and 

Cafine-Cafal study sites in GB. A) Scatterplot of predicted vs observed ECe. 

B) Percentage of importance by index contribution in the model.    

The salinity models effectively predicted the spatial distribution of ECe in the 

country’s MSRP, which was confirmed by cross-validation between the three study sites 

(Table 4.3). The RF model showed a maximum ρ value of 85%, while the R2 values at 

the three sites ranged from 0.71 to 0.81. Notably, Cafine-Cafal achieved the most accurate 

predictions, with a MAE of 10.81 dS m-1, and a RMSE of 15.59 dS m-1. Based on the 

BIAS analysis, the modeled values of all three study sites were found to have low values 

(PBIAS ranged from -5.73% to 5.81%), indicating a systematic slight overestimation 

tendency in Cafine-Cafal and a slight underestimation tendency in Elalab and Enchugal. 

Then, the RPIQ values for the three sites were 3.01 (Elalab), 2.56 (Cafine - Cafal) and 

2.07 (Enchugal), indicating strong prediction performance, particularly in Elalab village. 

Consequently, the RF model provides a robust validation for the diagnosis of soil salinity 

at the three sites in different regions (Tombali, Oio, Cacheu), each characterized by 

different edaphoclimatic conditions (Figure 4.8). 
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Table 4.3. Model accuracy in RF cross-validation between Elalab, Cafine-Cafal and 

Enchugal used to predict ECe in Guinea-Bissau. 

RF by study 

sites 
ρ R2 

MAE 

(dS m-1) 

RMSE 

(dS m-1) 

NRMSE 

(%) 
BIAS 

PBIAS 

(%) 
RPIQ 

Elalab 
0.90 0.81 19.68 29.23 36 -0.97 -1.19 3.01 

Cafine-Cafal 0.85 0.71 10.81 15.59 51 1.79 5.81 2.26 

Enchugal 0.91 0.80 11.71 19.39 49 -2.25 -5.73 2.07 

RMSE = root means square error. NRMSE = Normalized root means square error.  MAE = mean absolute 

error. PBIAS = Percent Bias. p = Pearson’s correlation coefficient. R2 = associated with Linear model. 

RPIQ = ratio of performance to interquartile range. RN= Random Forest. 

 

 
Figure 4.8. Soil salinity map located in the Cafine-Cafal (A), Elalab (B), and Enchugal 

(C) of Guinea-Bissau (D), West Africa. Soil salinity scale for the mangrove 

rice agroecosystem according to Sylla et al., (1995) adapted to ECe (dS m-1) 

(Sonmez et al., 2008). 
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6. Discussion 

6.1. Soil salinity and texture in MSRP  

The variability of ECe across the three study sites in GB ranged from 0.5 dS m-1 to 

353.7 dS m-1, with higher conductivity values observed near creeks/sea branches, and 

lower values in the middled rice fields (Figure 4.8). This pattern is likely due to the recent 

conversion of these areas to rice cultivation, as they are still influenced by tidal effects 

(Garbanzo et al., 2024a). Among the three study sites, the northern region exhibited 

higher ECe levels, likely resulting from a combination of lower rainfall distribution and 

agricultural management practices that promote salt accumulation in certain zones of the 

MSR fields. At the onset of the rainy season, rice cultivation in these areas is only possible 

if rainfall is sufficient to leach out salts from the rootzone, and if salt dissolution does not 

significantly hinder osmotic water uptake by rice varieties grown (see also, Muchate et 

al., 2016; Rodríguez Coca et al., 2023). A detailed discussion of rice production in these 

area and the key factors influencing soil salinity is available in (Garbanzo et al., 2025). 

The extremely high ECe values identified in this study are characteristic of 

hypersaline environments and are consistent with findings from other research conducted 

in mangrove rice fields in GB (Andreetta et al., 2016; Sylla et al., 1995), once the data 

are standardized to ECe. D’Amico et al., (2024) even reports higher, potentially unrealistic 

values. Comparable salinity levels have also been documented in mangrove ecosystems 

(Ahmed et al., 2022) and other hypersaline regions globally, such as Australia (Parker, 

2004), the USA (Scudiero et al., 2015; Timm and McGarigal, 2012), Mexico (Navarro-

Noya et al., 2015), Iran (Golestani et al., 2023), or Spain (Herrero et al., 2015; Herrero 

and Castañeda, 2023). Nonetheless, the elevated ECe values reported in this study should 
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be interpreted with caution, as no established conversion procedure currently exists for 

salinity levels this high.  

Salinity in MSRP fields in GB depends on the concentration of Na+, Mg2+, and Ca+2 

in the soil solution. These are the main cations that cause osmotic stress, and hinder water 

uptake by rice plants in some areas (Golabkesh et al., 2021). Particularly noted is the 

presence of high extractable Na+ concentrations (ranging from 50 to 173 cmol(+) L-1), 

which largely contributed to soil salinity observed in these locations. These constitute 

21% of the samples, all of which were previously mangrove forest soils (Andrieu et al., 

2019; Naidoo, 2023; Temudo et al., 2015; Temudo and Cabral, 2017). The high Na+ 

concentration observed in this study is consistent with those recently reported by 

D’Amico et al., (2024) in GB (0.17 – 1763.8 cmol(+) kg-1 with ammonium acetate. The 

increased concentrations of these elements originate from the genesis of these soils 

resulting from the alluvial sedimentation of particles near saline water bodies and the 

sedimentary impacts induced by tidal dynamics (D’Amico et al., 2024; Sylla, 1994; Sylla 

et al., 1995). The concentration of extractable Ca and Mg exceeded the critical levels for 

plants (Ca = 5, and Mg = 0.7 cmol(+) L-1), as reported by Cabalceta and Molina (2005). 

Medium fine soil textures (silty textures) had the highest ECe values determined in 

this study. These soils are characterized by poor structure and drainage conditions. The 

microporosity of the soil facilitates the upward movement of water and salts resulting 

from crop evapotranspiration. At the same time, low infiltration rates make the natural 

leaching process caused by rainfall challenging. Furthermore, loam soil textures have 

larger pores compared to fine texture classes, facilitating water movement through soil 

profiles (Ju et al., 2024; Lipiec et al., 2006). Infiltration rates are significantly higher in 

loamy and sand soil textures, facilitating the downward movement of solutes to deeper 

horizons, and thus leaching of salts (Allaire-Leung et al., 2000; Liu et al., 2023; Sun et 
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al., 2022). In contrast, clayed soil exhibit microporosity, resulting in greater tortuosity in 

the movement of water and solutes (Salmas et al., 2003; Singh, 2024). These soils tend 

to be well structured which can facilitate leaching. However, high sodium concentrations 

also disrupt soil structure, affecting pore continuity due to particle dispersion, and thereby 

destroying soil structure (Rengasamy and Olsson, 1991).  

Further research on the hydrological and geochemical processes governing water 

and salt transport in MSR fields is essential. To ensure the sustainability of MSR, it is 

therefore imperative to educate farmers and decision makers about the complex dynamics 

of these processes (Bazrafshan et al., 2020; van de Craats et al., 2020). As discussed by 

others (Li et al., 2022), differences in agroclimatic and pedogenetic characteristics 

between sites likely result in divergent patterns in water and salt fluxes. Notably, the 

northern and central study sites experience less precipitation compared to their southern 

counterparts, resulting in less salt leaching (see Van der Zee et al., 2017). This suggests 

a possible correlation between fluctuations in the groundwater level and its proximity to 

the soil surface. Some studies suggest that leaching of salts due to high tides is related to 

the ease of water movement in loamy soils (White and Madsen, 2016). In all coastal 

regions of the country where MSR is produced, endopedons tend to be saline (Andreetta 

et al., 2016; D’Amico et al., 2024), resulting in high concentration of dissolved salts in 

the phreatic zone (Van de Craats et al., 2020, White and Madsen, 2016). It is possible that 

in regions with sandy and loamy textures (such as the Elalab village), increased salt 

concentration occurs in the upper horizons in combination with the pressure effects of 

tidal movements, high soil evaporation, and low annual rainfall. Thus, tidal influences 

can directly impact groundwater dynamics, facilitate salt migration toward surface 

horizons and interact with soil water evaporation during the peak of the annual rainy 

season.   
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This likely contributes to hypersalinity in certain MSRP areas, as also reported by 

Sylla (1994). Additionally, water management practices have a direct impact on cation 

leaching from plots. For example, farmers in the north (Elalab) no longer drain freshwater 

(rainwater) that accumulates before plowing. In contrast, farmers in the South (Cafine-

Cafal) and certain areas of the Oio region (Enchugal) drain excess water before plowing. 

This practice promotes desalination of sites during high rainfall years. In Elalab village, 

progressive accumulation of salts occurs due to limited leaching, resulting in salts 

remaining in the system and exacerbating soil salinity.  

6.2. Spatial distribution of hypersalinity in MSRP fields 

The RNDSI index contributed the most to improving soil salinity predictions in the 

MSRP in GB (Figure 4.8). This is likely because they provide essential information about 

the reflectance of areas with diverse vegetation cover. These findings are consistent with 

those of other studies (e.g. Tan et al., 2023). The initial conditions of the paddies fields 

show large variations in various factors such as vegetation cover, dry and wet areas, in 

remnants of previous crops, and the occurrence of saline water intrusion. These likely 

provide information through reflectance in locations, such as energy transfer in soil or in 

various vegetation covers (Cui et al., 2023). Salinity index is widely used to monitor soil 

salinity and evaluate vegetation changes (Sirpa-Poma et al., 2023; Xiao et al., 2023; 

Zhang et al., 2022). In particular, the silt raster provides the model with a direct way to 

identify regions associated with high salt concentration, as discussed in Section 5.1. In 

addition,  NDSI and NDWI also played an important role in the model (Figure 4.7.B). 

Manual exclusion of each index resulted in reduced prediction accuracy (Table 4.1), 

underscoring their common importance in predicting soil salinity. These results are 

consistent with other studies indicating that variations in salinity reflectance spectra are 
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not due to a single soil property (Csillag et al., 1993) but rather to a complex interplay of 

site-specific characteristics (Dehaan and Taylor, 2002; Kalambukattu et al., 2023; 

Pettorelli et al., 2005) the combined contribution of salinity indices (RNDSI, NDSI), soil 

texture and water index (NDWI) were important for training the RF model. These indices 

have shown good accuracy in other soil salinity studies, such as using RNDSI (Tan et al., 

2023), NDSI (Venugopal et al., 2023), and NDWI (Lopes et al., 2020). Recently, Liu et 

al., (2023) successfully used SVM, RF regression, and multiple linear regression (MLR) 

to couple MODIS-NDVI, with electrical conductivity and soil texture to predict salinity 

conditions in Punjab, Pakistan.  

The results show that the RF regression algorithm was effective in identifying 

hypersaline sites within the MSRP (Figure 4.8). The exclusion analysis (Table 4.1) 

revealed that several features were non-essential for predicting ECe, although it is 

important to accurately assess the spatial distribution of salt concentrations in the MSRP, 

especially given the elevated ECe values (> 15 dS m-1). Similar results were reported by 

Sylla et al. (1995) on soil salinity in West Africa and supported by recent studies 

identifying high-risk hypersaline zones (D’Amico et al., 2024; Naimi et al., 2021; Yang 

et al., 2023), that are not easily detectable with remote sensing (Bannari et al., 2008). 

Such extreme site conditions could pose a challenge to rice production at the beginning 

and/or late phenological stages (e.g., flowering, grain filling), due to their high 

susceptibility to soil salinity (Minhas et al., 2020). While some studies used RF 

classification to predict salinity (Sirpa-Poma et al., 2023; Timm and McGarigal, 2012; 

Wang et al., 2021), these studies included sites with comparatively lower salinity (< 8 dS 

m-1) than those used for MSRP in GB. Furthermore, in these previous studies, the method 

was often applied to crops with low salinity tolerance, as is the case of some rice varieties 

(Sirpa-Poma et al., 2023; Wang et al., 2021).  
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The mangrove swamp areas in GB have shown that rice production is feasible in 

hypersaline locations. Smallholders grew rice under these initial hypersaline conditions 

and were able to become self-sufficient in rice (Garbanzo et al., 2024a; Martiarena and 

Temudo, 2023). The key to rice production in these locations lies in the efficient 

management of rainwater collection (Singh, 2021), which helps to dissolve salts in the 

fields and use the fields for fresh-water storage (Dossou-Yovo et al., 2022; Garbanzo et 

al., 2024b). Periasamy et al., (2022) highlighted the challenges for agricultural production 

in such systems. Nevertheless, farmers in GB have identified and demonstrated effective 

strategies for cultivating rice in highly saline environments. Although farmers have been 

able to manage salinity with the variable rainfall, these hypersaline locations remain 

extremely vulnerable (Han et al., 2024), especially in the face of climate variability and 

change. This fact requires a detailed understanding of the dynamics of salt movements 

and the solubility of salt within the system to optimize agronomic management in rice 

production.  

6.3. Consideration regarding the utilized model 

In this study, the RF model showed the highest accuracy, i.e. the lowest MAE, 

RMSE, and BIAS values, in diagnosing soil hypersalinity in GB (Table 4.2). The metric 

showed that it was superior in predicting ECe compared to SVM and CNN. As discussed 

by Breiman (2001), the RF model provides robustness to dimensional issues and data 

noise and enables efficient capture of complex patterns while controlling the inherent 

variance in model fitting (Liaw and Wiener, 2002; Liu et al., 2012; Siji and Sumathi, 

2020). Compared to SVM and CNN, RF may face challenges with highly variable and 

linear regression as reported in several studies (Decoste and Schölkopf, 2002; Huan et al., 

2009; Krizhevsky et al., 2017). However, CNN is more commonly used for image 
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prediction due to its ability to automatically learn hierarchical features (Bishop, 1995; 

Haykin, 1999; Krizhevsky et al., 2017), and has the advantage of detecting patterns in 

image data, as it requires large data-sets for training (Bishop, 1995). On the other hand, 

SVM can become inefficient as it allows manipulation of fewer hyperparameters 

compared to CNN and RF.   

CNN and RF showed no significant differences (p<0.05) in data prediction during 

the training phase, conversely, they showed significant differences in prediction of all 

data-sets. These findings are consistent with those of Louppe et al., (2013). In the current 

study, all three models were tested because existing literature on soil salinity 

recommended their use (Cui et al., 2023; Naimi et al., 2021). Salinity in MSRP fields had 

high variability in ECe, and no existing literature was found to recommend an optimal 

model for analyzing soil hypersalinity levels. Furthermore, some studies show that RF is 

an optimal model for soil salinity analysis, due to its high accuracy, robustness to 

overfitting, ability to provide insights into feature importance, and scalability for 

processing large data-sets (Kalambukattu et al., 2023; Xiao et al., 2023). Similar results 

have been reported for mapping mangrove systems in West Africa (Mondal et al., 2019). 

Finally, the exclusion analysis using the RF model in this study revealed a high R2 

value using the Clay and Silt raster together. However, the generated interpolation maps 

did not agree with the field observations. The inclusion of the clay raster in the model 

leads to the incorrect classification of all sites with high clay content in the MSR fields 

as saline. This misclassification is due to the high clay content of most sites and can lead 

to systematic prediction errors in the model. Therefore, it is recommended to review the 

BIAS and PBIAS metrics to determine the most accurate soil texture raster that more 

accurately reflects actual field conditions.  
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7. Conclusions 

Understanding MSR farming and water management practices, as well as the 

influence of Mg and Na on soil salinity is crucial for sustainable rice cultivation in GB. 

Soil salinity and its spatial distribution in MSRP areas showed significant correlations to 

silt raster, and different satellite indices (RNDSI, NDSI, NDWI). The use of algorithms 

such as RF proved to be an effective tool for understanding and improving the spatial 

distribution of ECe in the MSRP system. This approach provides an accurate 

approximation when validated at three different study sites, each regionally separated and 

with unique edaphoclimatic characteristics. The methodology outlined in this article for 

analyzing the spatial distribution of soil salinity in village paddies will facilitate the 

accurate identification of areas vulnerable to salinity in the mangrove swamp rice 

agroecosystem. This precision is important for the collaborative development of effective 

strategies to mitigate soil salinity. However, given the extremely high salinity levels 

observed at the onset of the rainy season, prior to rice planting, it is important to further 

explore and refine ECe conversion models for these upper salinity ranges. Enhancing 

these models would improve the accuracy of current monitoring approaches, most of 

which using more expedite extracts for soil analysis and characterization.  

Furthermore, the study highlights the imperative need for targeted interventions to 

address excessive soil salinization to optimize rice cultivation and water management 

practices in the MSRP in GB. Research carried out in GB over the past few decades has 

shown that the most successful measures to improve agricultural productivity and control 

soil salinity have been oriented towards creating of a semi-automated water management 

system operating both at the level of the entire village rice field and at the level of 

individual plots (see www.universsel.org). The developed model can thus help to identify 

the hypersaline locations of the rice fields where the installation of drain valves can allow 
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rapid and efficient drainage of the salts after the first rains. Furthermore, given the poor 

results of mangrove plantation in the country, this methodology can be adapted to identify 

the locations where plantation/sowing is prone to failure and provide nature-based 

solutions for mangrove forests recovery and increasing blue carbon sequestration in 

coastal areas of Guinea-Bissau and West Africa. Such strategic actions are essential for 

promoting sustainable agricultural practices and ecological resilience in the region and 

will contribute to achieving the Sustainable Development Goals SDG1, SDG2, SDG12, 

SDG13, and SDG14 (United Nations, 2024). 

This research represents one of the first attempts to map MSR areas in GB using 

machine learning techniques. While initial results are promising, additional validation 

and calibration of the prediction model across diverse geographic and climatic 

environments is necessary to ensure its robustness and applicability in West Africa. This 

is a key area for future work. Furthermore, there is a lack of comprehensive understanding 

of the specific roles and interactions of different cations in soil salinization, which could 

provide deeper insights into salinity dynamics. The lack of long-term monitoring studies 

limits the ability to assess the effectiveness of current salinity management practices and 

to refine the model over time, taking into account changing climatic conditions. 

Addressing these gaps will be crucial to advancing the scientific field and improving soil 

salinity management strategies. 
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8. Appendix 

8.1.  Appendix A. Sampling point map and geostatistical analysis and 

validation for soil texture raster. 

 

Figure 4.A1. Maps showing the specific points where soil samples were collected.  
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Table 4.A1. Geostatistical parameters and “Global Moran's Index” evaluation, along with cross validation, used to map soil texture in Cafine-

Cafal, Enchugal, and Elalab in Guinea-Bissau. 

Samples Model Nugget Sill Range 
Global 

Moran's I 
Variance 

Z 

punctuation 
p-value* MAE RMSE ρ 

  ------ index ------ m ----------------------------- Index -----------------------------  

Cafine-Cafal maps interpolation (n = 183)        

Sand Exponential 0.002150 0.0171 564 0.10 0.00373 1.755 <0.001 0.013 0.0172 0.99 

Silt Exponential 0.001420 0.01154 480 0.0997 0.00373 1.704 0.088 0.010 0.0134 0.99 

Clay Exponential 0.002410 0.02212 507 0.198 0.00375 3.334 <0.001 0.013 0.0164 0.99 

Elalab maps interpolation (n = 99)        

Sand Exponential 0.0466 0.1433 1579.93 0.381 0.005 5.463 <0.001 0.149 0.174 0.77 

Silt Gaussian 0.0331 0.1516 4520.65 0.348 0.005 5.010 <0.001 0.121 0.145 0.78 

Clay Linear 0.006823 0.00682 1470.36 -0.053 0.005 -0.612 0.54 0.053 0.067 0.56 

Enchugal maps interpolation (n = 100)        

Sand Spherical 0.00003 0.01516 471 0.0258 0.0034 4.601 <0.001 <0.001 0.001 0.99 

Silt Exponential 0.00054 0.00745 462 0.078 0.00334 1.53 0.12 0.006 0.008 0.99 

Clay Spherical 0.00029 0.02298 447 0.238 0.0034 4.257 <0.001 0.003 0.003 0.99 
* a probability of less than 2% that the clustered pattern could result from a random likelihood. LOOCV = Leave-one-out cross-validation. RMSE = root mean square 

error. MAE = mean absolute error. ρ = Pearson’s correlation coefficient. 
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8.2. Appendix B. Bands and indices used in soil salinity studies. 

Table 4.B2. Definition of bands and index used to calibrate the models in MSRPS of Guinea-Bissau, West Africa. 

* NDVI = Normalized Difference Vegetation Index. NDSI = Normalized difference vegetation index. SAVI = Soil adjusted vegetation index. VSSI = Vegetation soil salinity index. S1, SI, RS 

and YRS = Salinity index. Int = Intensity index. GCVI = Green chlorophyll vegetation index. VARI = Visible atmospherically resistant index. NDWI = Normalized difference water index. SR = 

simple ratio index. GRVI = Green Ratio Vegetation Index. GNDVI = Green light normalized difference vegetation index. Source: (Abd El-Hamid et al., 2023; Aksoy et al., 2022; Barreto et al., 

2023; Bouaziz et al., 2018; Chaaou et al., 2022; Dakak et al., 2023; Golabkesh et al., 2021; Li et al., 2022; Mzid et al., 2023; Shi et al., 2022; Tan et al., 2023; Triki Fourati et al., 2017, 2015; H. 

Zhang et al., 2023; Zhou et al., 2022).  

Index Definition Index Definition Index Definition Index Definition 

B1 Costal Blue S6_G1 (R × NIR) / G1 RSI1_G2 (G2 × Re)0.5 YRInt1_G2 (G2 + Y)/2 

B2 Blue (B) S6_G2 (R × NIR) / G2 RSI2_G1 [(G1)2+(Re)2+(NIR)2]0.5 YRInt2_G1 (G1 + Y + NIR)/2 

B3 Green 1 (G1) SI (B + R)0.5 RSI2_G2 [(G2)2+(Re)2+(NIR)2]0.5 YRInt2_G2 (G2 + Y + NIR)/2 

B4 Green 2 (G2) SI1_G1 (G1 × R)0.5 RSI3_G1 [(G1)2+(Re)2]0.5 YRNDSI (Y − NIR)/(Y + NIR) 

B5 Yellow (Y) SI1_G2 (G2 × R)0.5 RSI3_G2 [(G2)2+(Re)2]0.5 YRNDVI (NIR − Y)/(NIR + Y) 

B6 Red (R) SI2_G1 (G1) 2 + (R)2 + (NIR)2]0.5 RInt1_G1 (G1 + Re)/2 YBS1 Y/R 

B7 Red edge (Re) SI2_G2 (G2)2 + (R)2 + (NIR)2]0.5 RInt1_G2 (G1 + Re)/2 YBS2 (Y − R)/(Y + R) 

B8 Near-infrared (NIR) SI3_G1 ((G1)2 + (R)2)0.5 RInt2_G1 (G1 + Re + NIR)/2 YBS4 (Y × R) 0.5 

NDVI* (NIR-R) / (NIR + R) SI3_G2 ((G2)2 + (R)2)0.5 RInt2_G2 (G1 + Re + NIR)/2 YBS5_G1 (Y × R)/G1 

NIR B8 Int1_G1 (G1 + R) / 2 YRS1 B/Y YBS5_G2 (Y × R)/G2 

SR NIR / R Int1_G2 (G2 + R) / 2 YRS2 (B − Y)/(B + Y) YBSI (Y + R) 0.5 

GCVI (NIR / G) − 1 Int2_G1 (G1 + R + NIR) / 2 YRS3_G1 (G1 × Y)/B YGS3 (Y × R)/B 

NDWI (G − NIR) / (G + NIR) Int2_G2 (G2 + R + NIR) / 2 YRS3_G2 (G2 × Y)/B YGSI1 (Y × R) 0.5 

VARI (G − R) / (G + R − B) RS1 B/Re YRS4 (B × Y) 0.5 YGSI2 [(Y)2+(R)2+(NIR)2]0.5 

GRVI (NIR / G) RS2 (B − Re)/ (B + Re) YRS5_G1 (B × Y)/G1 YGSI3 [(Y)2+(R)2]0.5 

GNDVI (NIR − G) / (NIR + G) RS3_G1 (G1 × Re)/B YRS5_G2 (B × Y)/G2 YGInt1 (Y + R)/2 

NDSI (R − NIR) / (R + NIR) RS3_G2 (G2 × Re)/B YRS6_G1 (Y × NIR)/G1 YGInt2 (Y + R + NIR)/2 

SAVI (NIR − R) / ((NIR + R + 0.5) × 1.5) RS4 (B × Re) 0.5 YRS6_G2 (Y × NIR)/G2 YNS6_G1 (R × Y)/G1 

VSSI 2 × B3 – 5 (B4 + B5) / G × (B3) RS5-G1 (B × Re)/G1 YRSI (B + Y) 0.5 YNS6_G2 (R × Y)/G2 

S1 B / R RS5-G2 (B × Re)/G2 YRSI1_G1 (G1 × Y) 0.5 YNSI2_G1 [(G1)2+(R)2+(Y)2]0.5 

S2 (B − R) / (B + R) RS6_G1 (Re × NIR)/G1 YRSI1_G2 (G2 × Y) 0.5 YNSI2_G2 [(G2)2+(R)2+(Y)2]0.5 

S3_G1 (G1 × R) / B RS6_G2 (Re × NIR)/G2 YRSI2_G1 [(G1)2+(Y)2+(NIR)2]0.5 YNInt2_G1 G1 + R + Y)/2 

S3_G2 (G2 × R) / B RNDSI (Re − NIR)/ (Re + NIR) YRSI2_G2 [(G2)2+(Y)2+(NIR)2]0.5 YNInt2_G2 (G2 + R + Y)/2 

S4 (B × R)0.5 RNDVI (NIR − Re)/ (NIR + Re) YRSI3_G1 [(G1)2+(Y)2]0.5 YNNDSI (R − Y)/(R + Y) 

S5_G1 (B × R) / G1 RSI (B + Re)0.5 YRSI3_G2 [(G2)2+(Y)2]0.5 YNNDVI (Y − R)/(Y + R) 

S5_G2 (B × R) / G2 RSI1_G1 (G1 × Re)0.5 YRInt1_G1 (G1 + Y)/2 - - 
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 Appendix C. Correlation of ECe data with salinity indices and bands.  

Table 4.C3. Pearson correlation (ρ) between ECe (dS m-1) and Satellite indices evaluated 

in three study sites in Guinea-Bissau, West Africa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Index ρ Index Definition Index ρ Index ρ 

RNDSI 0,51 YRS2 -0,17 SI1_G1 0,11 S5_G1 -0,08 

RNDVI -0,51 VSSI 0,16 YRSI2_G1 -0,11 YRS4 0,08 

Clay Raster -0,43 S3_G1 0,16 YNSI2_G1 0,11 S1 -0,07 

YRNDSI 0,39 YGS3 0,16 YBS2 0,11 Int2_G1 -0,07 

YRNDVI -0,39 YRS3_G1 0,15 YNNDSI -0,11 Int2_G2 -0,06 

SAVI -0,37 b4 0,15 YNNDVI 0,11 RSI 0,06 

NDVI -0,37 YRSI1_G2 0,15 YNSI2_G2 0,11 RS5_G1 -0,06 

NDSI 0,37 YRInt1_G2 0,14 RSI3_G2 0,11 b6 0,06 

NDWI 0,34 RS2 -0,14 YRSI2_G2 -0,11 RS5_G2 -0,06 

GNDVI -0,34 YRSI3_G2 0,14 RSI2_G1 -0,11 YGInt2 -0,06 

GCVI -0,31 RS1 -0,14 RSI2_G2 -0,11 RInt2_G1 -0,06 

GRVI -0,31 b3 0,14 Int1_G1 0,10 RInt2_G2 -0,05 

YRS6_G2 -0,28 YRSI1_G1 0,14 SI1_G2 0,10 RS4 0,05 

RS6_G2 -0,28 YRInt1_G1 0,14 YGSI2 -0,10 YRInt2_G2 -0,05 

SR -0,27 YRSI3_G1 0,13 Silt Raster 0,10 YRInt2_G1 -0,05 

b8 -0,26 RSI1_G1 0,13 YBS4 0,10 YBS5_G2 0,04 

pc2 -0,25 b5 0,13 YGSI1 0,10 YNS6_G2 0,04 

YRS6_G1 -0,25 VARI 0,13 Int1_G2 0,10 SI 0,04 

YRS3_G2 0,23 SI2_G1 -0,13 YGInt1 0,10 pc1 0,04 

S6_G1 -0,23 pc3 0,13 YGSI3 0,10 S4 0,04 

S6_G2 -0,23 RInt1_G1 0,12 SI3_G1 0,10 YBS5_G1 0,03 

Sand Raster 0,23 SI2_G2 -0,12 SI3_G2 0,09 YNS6_G1 0,03 

Clay+Silt Raster -0,23 RSI1_G2 0,12 YBS1 0,09 YRS5_G1 -0,03 

RS6_G1 -0,21 RInt1_G2 0,12 b7 0,09 b8_asm 0,03 

RS3_G2 0,21 YNInt2_G1 0,12 YBSI 0,09 YRS5_G2 -0,02 

RS3_G1 0,19 b1 0,12 YRSI 0,09 b2 0,01 

YRS1 -0,18 RSI3_G1 0,11 S2 -0,08 ECe 1,00 

S3_G2 0,17 YNInt2_G2 0,11 S5_G2 -0,08 - - 
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8.3.  Appendix D. Confusion matrix of ECe data with salinity indices 

and soil texture raster.  

 

Figure 4.D1. Pearson correlation coefficients between selected satellite indices (above ρ 

> 0.30 and -0.30), soil texture raster, and ground-truth ECe (dS m-1).  
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8.4.  Appendix E. Importance of features in modeling.   

 

Figure 4.E2. Analysis of the best satellite indices and soil texture raster contributions 

within the RF model was conducted to select the most critical predictor for 

ground-truth ECe (dS m-1) estimation in the MSRP, West Africa. 
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8.5.  Appendix F. General computational flow of the CNN.  

A) Input to the model. 

All input vectors represent the standardized features extracted from the data-set. 

B) 1D convolutional layer. 

𝑎𝑙 = 𝑓(𝑊𝑙 ∗  𝑥𝑙−1 + 𝑏𝑙) 

Eq. 4.1F 

Where 𝑎𝑙 is the activation layer at layer 𝑙, 𝑊𝑙, 𝑏𝑙, are the weights and biases of 

the convolutional layer; 𝑥𝑙−1 is the input from the previous layer or the initial 

input; ∗ denotes the convolution operation; and 𝑓 is a non-linear activation 

function. 

C) Batch Normalization. 

𝑦𝑙 = 𝛾𝑙 (
𝑎𝑙 − 𝜇𝑙

√(𝜎𝑙)2 + 𝜖
) + 𝛽𝑙 

Eq. 4.2F 

Where 𝑦𝑙 is the batch Normalization; 𝜇𝑙 and (𝜎𝑙)2are the mean and variance 

calculated over the batch for the layer 𝑙; 𝛾𝑙 and 𝛽𝑙 are parameters to be learned, 

and 𝜖 is small constant added for numerical stability.  

D) Fully connected layers. 

𝑧𝑙 = 𝑊𝑙𝑎𝑙−1 + 𝑏𝑙 

Eq. 4.3F 

𝑎𝑙 = 𝑓(𝑧𝑙) 

Eq. 4.4F 

Where 𝑧𝑙 is the input to the fully connected layers 𝑙, processed through one or 

more such layers; 𝑊𝑙 and 𝑏𝑙are the weights and biases of the fully connected layer 

𝑙; and 𝑓 is the activation function. 

E) Smoot L1 loss function. 

L(𝑦, 𝑦̂) = {
0.5(𝑦 − 𝑦̂)2  𝑖𝑓 |𝑦 −𝑦̂| < 1
|𝑦 −𝑦̂| − 0.5,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Eq. 4.5F 

Where 𝑦 is the actual target value and 𝑦̂ is the predicted value from the network. 

CNN manages errors and learns from the input data to make accurate predictions, 

ultimately influencing the performance of the model and effectiveness in 

regression tasks. 
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1. Abstract 

Crop water use (ETc) is typically estimated as the product of crop evapotranspiration 

(ETo) and a crop coefficient (Kc). However, the estimation of ETo requires various 

meteorological data which are often unavailable or of poor quality, particularly in 

countries such as Guinea-Bissau where the maintenance of weather stations is frequently 

inadequate. The present study aimed to assess alternative approaches, as outlined in the 

revised FAO56 guidelines, for estimating ETo when only temperature data is available. 

These included the use of various predictors for the missing climatic variables, referred 

to as the Penman-Monteith temperature (PMT) approach. New approaches were 

developed, with a particular focus on optimizing the predictors at the cluster level. 

Furthermore, different gridded weather datasets (AgERA5 and MERRA-2 reanalysis) 

were evaluated for ETo estimation to overcome the lack of ground truth data and upscale 

ETo estimates from point to regional and national levels, thereby supporting water 

management decision-making. The results demonstrate that the PMT is generally 

accurate, with RMSE not exceeding 26% of the average daily ETo. With regard to 

shortwave radiation, using the temperature difference as a predictor in combination with 

cluster-focused multiple linear regression equations for estimating the radiation 

adjustment coefficient (kRs) yielded accurate results. ETo estimates derived using raw 

(uncorrected) reanalysis data exhibit considerable bias and high RMSE (1.07-1.57 mm d-

1), indicating the need for bias correction. Various corrections methods were tested, with 

the simple bias correction delivering the best overall performance, reducing RMSE to 

0.99 mm d⁻¹ and 1.05 mm d⁻¹ for AgERA5 and MERRA-2, respectively and achieving a 

normalized RMSE of about 22%. After implementing bias correction, the AgERA5 was 

found to be superior to the MERRA-2 for all the studied sites. Furthermore, the PMT out-

performed the bias-corrected reanalysis in estimating ETo. It was concluded that PMT- 

ETo can be recommended for further application in countries with limited access to 

ground-truth meteorological data as it requires only basic technical skills. It can also be 

used alongside reanalysis data, which demands more advanced expertise, particularly for 

data retrieval and processing. 
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2. Introduction 

An accurate estimation of the reference crop evapotranspiration (ETo) is critical for 

agricultural water resources planning and management (Allen et al., 1998; Pereira et al., 

2015, 2025). ETo quantifies the natural loss of water to the atmosphere, incorporating an 

approximation that accounts for both evaporation and transpiration from a reference 

surface (Allen et al., 1998; Pereira et al., 2025). The FAO-PM ETo was parametrized for 

a hypothetical reference crop with specific characteristics in terms of height (0.12 m), 

albedo that reflects 23% and absorbs 77% of the incoming radiation under standard 

conditions, and a fixed surface resistance of 70 s m-1 (Allen et al., 1998). ETo is essential 

for estimating crop water use (ETc) as it represents the climatic demand conditions. Crop 

ET is commonly estimated using the FAO approach , which involves multiplying ETo by 

a crop coefficient (Kc). The latter considers the differences in characteristics of the crop 

under study relative to the reference crop. Therefore, it enables the quantification of water 

use by any agroecosystem, landscape, wetland, and riparian ecosystem (Pereira et al., 

2024). Under water or salinity stress, crop ET decreases (Allen et al., 1998; Liu, Paredes, 

et al., 2022; Liu, Shi, et al., 2022; Rosa et al., 2016). 

The FAO-PM ETo requires data on several weather variables, including maximum and 

minimum temperature, shortwave or net radiation, relative humidity or dew point 

temperature, and wind speed. The FAO 56 guideline (Allen et al., 1998), which have 

recently been revised (Pereira et al., 2025), describes alternative approaches for 

estimating missing weather variables data, namely when using temperature data only 

(FAO-PMT), making these tools particularly valuable in regions with insufficient weather 

stations or low maintenance capabilities (Allen et al., 1998; Pereira et al., 2025). To 

improve the accuracy of the ETo PMT estimates, the calibration of the predictors may be 

performed for local conditions (Almorox et al., 2018; Paredes, Fontes, et al., 2018; 
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Popova et al., 2006; Raziei & Pereira, 2013) or, alternatively, simplifications to the 

method can be adopted (Paredes et al., 2020; Pereira et al., 2025). The accuracy of the 

PMT approach has been demonstrated in several studies conducted across Africa 

(Djaman et al., 2016, 2017; Koudahe et al., 2018; Landeras et al., 2018; Yonaba et al., 

2023), although in many of these cases, adequate observed weather datasets were not 

available for a consolidated assessment of alternative approaches. Another commonly 

used approach that uses temperature data only for ETo estimation is the Hargreaves-

Samani (HS) equation, earlier developed for the Senegal River Basin (Hargreaves et al., 

1985) and later commonly used (Abdul-salam et al., 2023; Moratiel et al., 2020; Musa & 

Elagib, 2025; Paredes et al., 2020). The ETo estimates with HS can also be used with the 

FAO Kc-ETo approach despite the need for adjustments.  

Various heuristic approaches have also been used to estimate ETo with minimal data 

availability, with machine learning (ML) algorithms being among the most widely used. 

However, as discussed by Pereira et al. (Pereira et al., 2015), these approaches do not use 

the fundamental physics underlying the FAO-PM ETo equation, which is considered 

relevant when selecting alternative approaches to calculate ETo when weather datasets 

are incomplete. These algorithms leverage training data to model variables for specific 

regions or sites (Zhu et al., 2020). However, they have limited applicability   as they are 

generally not transferable and are only effective for the sites for which they were 

developed. Examples of these approaches include support vector machines (SVMs) and 

random forest (RF), which are renowned for their accuracy in predictions using limited 

input data (Wu et al., 2019; Zereg & Belouz, 2023).  

Alternative sources of weather data are those based on observational data with different 

spatial and temporal resolutions and different available weather variables. Examples 

include the Climate Research Unit Time Series (CRU) (Harris et al., 2020) and 
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WorldClim for the globe (Hijmans et al., 2005), E-OBS for Europe (Anwar et al., 2023), 

PRISM climate data for the USA (Daly et al., 2008), Iberia01 (Herrera et al., 2019) for 

the Iberian Peninsula, or those provided by (Xavier et al., 2022) for Brazil. For given 

weather variables, such as shortwave radiation, satellite data can be obtained, e.g. data 

provided by the geostationary Meteosat Second Generation (MSG) system, which 

includes the Satellite Application Facility for Land Surface Analysis (LSA-SAF) 

(Gebremedhin et al., 2022; Paredes et al., 2021; Trigo et al., 2018).  

Other sources of weather data include reanalysis gridded data obtained by integrating 

observations from various sources, including ground-based weather stations, ocean 

buoys, ships, aircraft, and satellite sensors (Demchev et al., 2020; ECMWF, 2020). This 

integration is carried out by modelling and data assimilation systems, which provide 

accurate and continuous estimates of climate and meteorological variables (Dee et al., 

2011; Toreti et al., 2019). Their temporal resolution can be hourly, daily, or monthly. The 

spatial resolution varies, depending on the data source. One of the most widely used 

sources is the ERA5 reanalysis, made available by the European Centre for Medium-

Range Weather Forecasts (ECMWF) (Dee et al., 2011; Xue et al., 2019). The AgERA5 

dataset, which focuses on agriculture, is derived from this data set. This dataset provides 

hourly data with a spatial resolution of 0.1° (Brown et al., 2023; Kruger et al., 2024). 

Another often used reanalysis dataset is MERRA-2 version 2, an atmospheric reanalysis 

developed by NASA (National Aeronautics and Space Administration). MERRA-2 

provides a reanalysis of global climatic and weather information (Rienecker et al., 2011). 

Another reanalysis-based dataset is that provided by the National Centers for 

Environmental Prediction – National Center for Atmospheric Research (NCEP/NCAR) 

(Kistler et al., 2001). Reanalysis data have been used in several studies to estimate ETo 

and assess its spatial distribution (Kruger et al., 2024; Martins et al., 2017; Nouri & 
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Homaee, 2022; Xi et al., 2023; Zhang et al., 2021). One of the key advantages of using 

reanalysis data is that they provides all the weather variables required to calculate ETo 

without any gaps (Meng et al., 2022; Vicente‐Serrano et al., 2023). However, many 

studies have found that these gridded datasets require bias corrections, such as additive 

bias correction (Paredes et al., 2021; Paredes, Martins, et al., 2018), simple regional bias 

correction (Gourgouletis et al., 2023; Pelosi et al., 2020) and Kalman filtering for 

temperature modelling (Pelosi et al., 2017), as well as adequate downscaling methods 

(Viggiano et al., 2019) to improve their quality.  

The above-cited studies emphasize the critical importance of bias correction, particularly 

in regions lacking baseline meteorological information, such as many tropical areas (Dee 

et al., 2011), including part of Africa. This is the case of Guinea-Bissau (GB), located in 

West Africa, with an economy based primarily on agriculture. GB has limited economic 

resources, which has led to a decline in government investment in meteorological and 

agricultural information after independence. Although long term weather records exist at 

three sites in the country (Bissau, Bafata and Bolama), they are incomplete due to the loss 

of documents during the civil war (1998 - 1999), poor resources for digitizing the data 

and maintaining the weather stations, and a lack of financial resources for purchasing new 

sensors (Ferreira, 2004; Kovsted & Tarp, 1999). However, these sites only cover a small 

part of the country as they exclude the most important agricultural areas, regions in the 

north affected by drought, humid zones in the south, and the archipelago of Bijagós 

(Republic of Guinea Bissau, 2014, 2018; Samuel et al., 2019). This hinders the spatial 

quantification of ETo across the country, particularly in agricultural water management 

studies (Garbanzo, Céspedes, et al., 2024; Garbanzo, do Rosário Cameira, et al., 2025), 

and highlights the need for easy-to-use approaches to cope with reduced weather datasets.  
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Therefore, the main objective of this study is to evaluate different approaches for 

estimating FAO-PM ETo using only temperature data (PMT). In addition, the study aims 

to assess the accuracy of AgERA5 and MERRA-2 reanalysis weather datasets to support 

the scaling of ETo estimates from field level to regional and national levels. This is the 

first study of its kind conducted in Guinea-Bissau, and its novelty lies in the combined 

use of ground-truth meteorological observations and reanalysis datasets. The 

methodologies developed will be made accessible to GB technical staff, who have diverse 

skills levels, namely relative to the use modeling tools aimed at improving water 

management in mangrove rice cultivation. Furthermore, the results of the current study 

are expected to enhance water resource management across different spatial scales and 

may contribute to improved water governance, particularly under conditions of climate 

variability and freshwater increasing scarcity. 

3. Material and methods 

3.1.  Climate 

The study was conducted in GB, West Africa (Figure 5.1). The study sites were located 

mainly in the coastal region (Figure 5.1), where, according to the Köppen–Geiger 

classification (Beck et al., 2018; Kottek et al., 2006) , the climate is of equatorial savannah 

with dry winter (Aw) but with different life zones as per the Holdridge classification 

(Harris, 2014; Holdridge, 1947). The aridity index (AI, Table 5.S2 in supplemental 

material), as defined by (UNEP, 1997), is the ratio of the long-term mean annual 

precipitation (P, mm) to the (Thornthwaite, 1948)) to the mean annual climatic 

evaporation index (CEITH, mm). The northern part of GB is classified as moist sub-humid 

(AI ≈= 0.7), while the south of the country has (AI > 1.0).  
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Figure 5.1. Location of Guinea-Bissau in West Africa (top), reanalysis grid points within 

the country, and distribution of weather stations (bottom). 

3.2. Data 

3.2.1. Ground truth weather data 

Automatic weather stations were installed over well-watered grass at various locations 

across the country (Table 5.1, Figure 5.1), situated in open areas, away from trees and 

buildings. The ATMOS 41 weather stations (Meter Environment Products, USA) were 

mounted on metal poles at a height of two meters above ground level, oriented northward 

according to the installation guidelines. Data were recorded every 30 minutes using ZL6 

data loggers (Meter Group, Pullman, WA, USA). The stations were regularly maintained 

to ensure data quality, including the removal of Saharan dirt and dust, inspection of 

battery levels and cleaning of the solar panels on the data loggers, typically every two 
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months or whenever malfunctions were detected. Detailed information on weather station 

locations (Figure 5.1) and data collection periods is provided in Table 5.1. 

Table 5.1. Geographic coordinates, elevation, and data recording periods of the weather 

stations in Guinea-Bissau. 

Region 
Weather 

Station 

Latitude 

(°N) 

Longitude 

(°W) 

Elevation 

(m) 

Start of Data 

Collection 

End of Data 

Collection 

Number 

of 30 min 

Records 

South 

Cafine 11.214919 −15.174659 6.0 8 April 2021 1 June 2024 45,563 

Quebil 11.270221 −15.236727 8.4 10 March 2021 30 May 2024 16,378 

Buba 11.587290 −14.998417 10.9 22 August 2021 30 May 2024 45,193 

Central 

Malafu 12.014828 −15.020001 24.9 10 April 2021 30 May 2024 48,388 

Enchugal 12.046918 −15.436894 16.6 11 April 2021 29 May 2024 43,768 

Bissora 12.220728 −15.444387 15.1 11 January 2022 3 June 2024 41,951 

Cacheu 12.258014 −16.157159 21.2 12 January 2022 11 June 2024 42,280 

North 

S. Domingos 12.414232 −16.182400 12.5 12 April 2021 4 June 2024 45,132 

Djobel 12.280922 −16.392913 10.0 12 July 2022 5 June 2024 49,978 

Elalab 12.246547 −16.443420 10.8 12 April 2021 4 June 2024 45,176 

Island Bubaque 11.299951 −15.831088 29.8 9 January 2022 31 December 2023 34,634 

This study was carried out using the daily weather data recorded at each weather station. 

Thirty-minute measurements were processed to obtain daily values of maximum and 

minimum temperature (Tmax, Tmin, ºC), maximum and minimum relative humidity 

(RHmax, RHmin, %), wind speed at 2 m height (u2, m s-1), and short wave solar radiation 

(Rs, MJ m-1). In line with common practices in several meteorological services, the RH 

measured at 9 a.m. (RH9) was taken to represent the mean daily conditions (RHmean). 

Rainfall (mm) data at 30 min intervals (mm) were also available from all weather stations. 

3.2.2. Reanalysis weather data  

Reanalysis datasets were obtained from two sources: the European Center for Medium-

Range Weather Forecasts (ECMWF), platform AgrERA5, part of the Copernicus project 
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(Boogaard et al., 2020), and the Global Modeling and Assimilation Office (GMAO), 

platform MERRA-2.  

AgERA5 is a daily reanalysis dataset provided by ECMWF, available from 1979 to the 

present, with a focus on providing data for agricultural and agroecological studies 

(Chevuru et al., 2023; Van Tricht et al., 2023). It is provided at a spatial resolution of 0.1° 

× 0.1° (approximately 11 km × 11 km) (Boogaard et al., 2020) and is derived by forcing 

hourly ECMWF ERA5 data at the surface level. AgERA5 includes at wide range of 

atmospheric and surface variables. For this study, the following variables were 

downloaded from the Copernicus Climate Change Service (C3S) Climate Data Store 

(CDS) website: Rs (J m-2d-1), Tmin and Tmax (K), dew point temperature (Tdew, K), RH9 

(%), and wind speed measured at 10 m height (u10, m s-1).  

MERRA also has a version tailored for agricultural studies, known as (AgMERRA). 

However, this dataset was not used in the present study due to its limited temporal 

coverage (1980-2010) (Galmarini et al., 2024; Ruane et al., 2015). Instead, the more 

recent product MERRA-2, developed by NASA to replace the original MERRA using a 

fixed assimilation system (Rienecker et al., 2011), was used, as it spans from 1980 to the 

present. MERRA-2 provides daily weather data at a spatial resolution of 0.5o x 0.625o 

(Global Modeling and Assimilation Office (GMAO), 2015a, 2015b). All variables 

required for the calculation of FAO-PM ETo were downloaded: Tmin (K), Tmax (K), Tdew 

(K), RH9 (%), u10 (m s-1), Rs (J m-2 d-1), and vapor pressure (hPa). The appropriate 

conversion of units was therefore performed on both datasets, with the wind speed at 10 

meters adjusted to 2 meters in accordance with the recommendation of FAO 56 (Allen et 

al., 1998). Further details on the data assimilation system and performance metrics for 

AgrERA5 are reported by (Hersbach et al., 2020) and for MERRA-2 by (Gelaro et al., 

2017).  
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The datasets were accessed using a script written in Python version 3.11 (Van Rossum & 

Drake, 2009). The MERRA-2 reanalysis data featured fewer grid centroids (36) compared 

to the AgERA5 (356), due to differences in spatial resolution between the two data sets. 

Both datasets were organized to cover the same period as the observed weather data, from 

January 2021 to May 2024 (Table 5.1). The Euclidean distance (straight line between two 

points) was calculated between each grid centroid and the weather station locations 

(Mardia et al., 1979). A filtering process was applied, and each grid centroid was 

classified based on its proximity to the weather stations. Following other approaches in 

the literature, the nearest grid point to each station was selected for use in this study 

(Paredes et al., 2021; Pelosi & Chirico, 2021; Soulis et al., 2025; Vanella et al., 2022). 

Although other methods exist, e.g. multiple linear regression (Paredes, Martins, et al., 

2018) or triangle-based bi-linear interpolation method (Pelosi, 2023), these approaches 

have not been shown to outperform the simpler and widely adopted method of using the 

nearest grid point to the targeted station.  

3.3.  Computation of the FAO-Penman Monteith ETo  

 

The FAO Penman-Monteith equation is the most widely used method in agriculture for 

estimating the reference crop evapotranspiration (PM-ETo) (Allen et al., 1998; Pereira et 

al., 2025). It allows for an accurate determination of the climatic demand conditions as it 

integrates various meteorological variables. The daily ETo is estimated as follows: 

ETo =  
0.408 ∆ (Rn −  G)  +  γ 

900
T +  273 u2 (es  −  ea)

∆ +  γ (1 +  0.34 u2)
 (1) 

where ∆ is the slope vapor pressure curve (kPa oC-1); Rn is the net radiation at the crop 

surface (MJ m-2 d-1); G is the soil heat flux density (MJ m-2 d-1), which is negligible at 
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daily steps, T is the air temperature at 2 m height (oC); u2 is the wind speed at 2 m height 

(m s-1); es is the saturation vapor pressure (kPa); ea is the actual vapor pressure (kPa), es – 

ea is the vapor pressure deficit (kPa); and γ is the psychrometric constant (kPa oC-1). 

The net radiation at the crop surface (Rn, MJ m-2 d-1) is calculated as the difference 

between the net shortwave radiation (Rns, MJ m-2 d-1) and the net longwave radiation (Rnl, 

MJ m-2 d-1), where Rns is calculated as (1 – α) Rs, assuming an albedo (α) value of 0.23 for 

the green grass reference crop and Rnl is calculated as follows: 

Rnl = σ [
Tmax, K4 + Tmin, K4

2
] (0.34 − 0.14√ea) (1.35

Rs

Rso
− 0.35) (2) 

where 𝜎 is the Stefan-Boltzmann constant (4.903 x 10-9 MJ K-4 d-1), and Tmax and Tmin are 

the daily maximum and minimum temperatures (K), respectively. The mean es for a day 

is calculated as the average of the vapor pressure at the maximum and minimum 

temperature while ea is estimated from the RHmax and RHmin as follows:  

ea =
eo(Tmin)

RHmax

100 + eo(Tmax) 
RHmin

100
2

 
(3) 

where e°(Tmin) (kPa) and e°(Tmax) (kPa) are the saturation vapor pressure at the daily 

minimum and maximum air temperature, respectively, and RHmax (%) and RHmin (%) are 

the maximum and minimum relative humidity, respectively. 

The wind speed data (u2, m s-1) at the standard height of two meters above the ground 

level is obtained from that measured at height z (m) through the following logarithmic 

transformation: 

u2 = uz

4.87

ln(67.8 z − 5.42)
 (4) 
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where uZ is the wind speed measured at z meters above the ground surface (m s-1), and z 

is the height of the measurement above the ground surface (m). 

3.4.  Calculation of ETo using only temperature data (FAO-PMT) 

Several approaches were used to estimate Tdew, u2 and Rs to overcome missing data or 

data with poor quality. The predictors and the combination of approaches used in the 

current study are detailed in Figure 5.2. For ea computation, and therefore the prediction 

of Tdew, the first approach used was straightforward and assumed Tmin as the best predictor 

for Tdew (Allen et al., 1998; Pereira et al., 2025). A second approach used either Tmin (for 

moist-subhumid sites), or the Tmean – aD (for humid sites) with aD=2, both depending on 

the location aridity index (AI) (Paredes et al., 2021; Pereira et al., 2025; Todorovic et al., 

2013). Therefore, the first step was to calculate the already mentioned AI for each 

location. The third approach consisted of the numerically optimization of the value of aD 

by minimizing the Root Mean Squared Error (RMSE) using the “L-BFGS-B” algorithm 

(See Supplementary material S1). To overcome the missing u2 data, two predictors were 

used, the average local or regional (u2 avg) or the world average value (u2 def = 2 m s-1) 

(Allen et al., 1998; Pereira et al., 2025). 
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Figure 5.2. Flowchart of the approaches used to estimate reference crop 

evapotranspiration using the FAO-PM method based on temperature only 

(PMT). (MLR – multiple linear regression). 

The shortwave radiation was estimated using the following equation (Hargreaves & 

Samani, 1982):  

𝑅𝑠 = 𝑘𝑅𝑠 (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5 𝑅𝑎 (5) 

where kRs is the empirical adjustment coefficient (°C-0.5), Tmax and Tmin are the maximum 

and minimum air temperature (°C), and Ra is the extraterrestrial radiation (MJ m-2 d-1). 

The estimation of kRs was carried out using three different approaches (Figure 5.2). The 

first two were based on the use of pre-established multiple linear regression (MLR) 

equations derived from long-term data collected from 555 weather stations across the 

Mediterranean. These MLR equations were derived by testing the average daily 

temperature difference (TDavg), the daily average local or regional wind speed (u2 avg), 

and the daily average relative humidity (RHavg) as predictors of kRs using a set of 

goodness-of-fit indicators as detail by Paredes et al. (2020). Therefore, one MLR global 

Dry subhumid Moist-subhumid Humid

u2 average u2 default

kRs from Global 
MLR eq.

kRs from climate-focused
MLR eq.

Aridity Index

Tmin Tmin Tmin Tmean - 2 Tmean – aD, optimized
Tdew predictors

Rs predictors
(kRs, Eq. 4)

u2 predictors

FAO-PMT Reference crop evapotranspiration

Input weather data

Long-term
RHavg, u2 avg, TDavg

Precipitation
Temperature

kRs from optimized cluster-
focused MLR eq.
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application across all climate types (global), and the other tailored to specific climate 

conditions (climate-focused), based on the AI (Paredes et al., 2020; Paredes & Pereira, 

2019; Pereira et al., 2025), as follows: 

Global equation (all climate types): kRs = 0.365 − 0.0099 TDavg + 0.0194 u2 avg − 0.0017 RHavg       (6) 

Climate focused equations:  

Humid climates (AI>1.0) kRs = 0.519 − 0.0104 TDavg + 0.0188 u2 avg − 0.0035 RHavg       (7a) 

Moist locations (0.50 ≤AI <1.00) kRs = 0.396 − 0.0105 TDavg + 0.0186 u2 avg − 0.0021 RHavg       (7b) 

where TDavg is the average daily temperature difference Tmax – Tmin, u2 avg is the daily 

average local or regional wind speed, and RHavg is the daily average relative humidity, all 

computed using a long-term data set. 

The third approach was developed to improve kRs estimates and, consequently, the ETo 

PMT estimates. New adjusted MLR equations were derived at the cluster level (cluster-

focused) using the same kRs predictors as in the previous approaches (TD avg, HRavg, u2 

avg). The optimization was performed using the “L-BFGS-B” algorithm, aiming to 

minimizing the root mean square error (RMSE) between the ETo and the ETo PMT (see 

supplementary S1 algorithm with the aim of minimize the root mean square error (RMSE) 

between the ETo and the ETo PMT (see Supplementary material S1). Therefore, kRs was 

considered treated as a cluster-specific constant of proportionality, derived through MLR 

using long-term mean values of the referred predictors. Due to the relatively short weather 

dataset (< 20 years), it was divided into calibration and validation subsets, comprising 

70 % and 30 % of the data, respectively.  

All the approaches were applied at two levels: individually at each site, and across groups 

of sites as defined by the cluster analysis (Section 2.5).    
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3.5.  Data quality assurance and quality checking (QAQC) 

All the weather datasets used in this study were subjected to prior quality assurance and 

control procedures to ensure consistency, integrity and quality for ETo calculations. This 

step is mandatory to avoid error propagation into ETo calculations. To this end, a custom 

script was developed to analyze data behavior through visual diagnostic tools including 

Q-Q plots and the normal probability plots (qqnorm), to identify data patterns and trends. 

Given the tropical location of the study, outliers were removed by applying a threshold 

of 3.5 times the interquartile range (IQR) below the first quartile (Q1) and above the third 

quartile (Q3) (Di Ciaccio et al., 2012; Dodge, 2008). This procedure aimed to exclude 

extreme values likely resulting from measurement errors that could significantly bias the 

analysis. Subsequently, the datasets were tested for mean homogeneity, trend, and 

variance homogeneity tests, following established statistical procedures (Allen, 1996; 

Levene, 1960; Montgomery & Runger, 2011; Pereira et al., 2025).  

Wind speed data were specifically examined for prolonged periods of nearly constant and 

low values (≤0.5 m s-1), which may indicate anemometer malfunction or a numerical 

'offset' in the sensor calibration.  

Shortwave radiation data (Rs, MJ m-2 d-1) were evaluated following the procedure 

recommended by (Allen, 1996, 2008). The Rs values were compared with estimated clear-

sky solar radiation (Rso, MJ m-2 d-1) for each location, with Rso calculated as follows 

(Allen et al., 1998; Pereira et al., 2025):  

Rso = Ra (0.75 + (2 × 10−5 z)) (8) 

where Ra is the extraterrestrial radiation (MJ m-2 d-1) and z is the weather station altitude 

(m) (Table 5.1). Ra calculation method is detailed in (Allen et al., 1998). 
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The Rs/Rso ratio was calculated as the highest recorded observation within each 15-day 

period. This ratio was then used to adjust the remaining Rs observations by dividing each 

observed Rs by the ratio calculated for the highest record in that period. This procedure 

was systematically applied across the entire dataset for each weather station. All 

calculations and analyses were carried out using R statistical software version 2025.05.1 

+513 (R Core Team, 2024). This tool performs functions similar to those of the 

agweather-qaqc software (Dunkerly et al., 2024). 

Relative humidity values were plotted against air temperature throughout the day to check 

for inverse behavior. RHmax values were inspected to determine whether they approached 

saturation or were no more than 3-5% higher in the early morning or during rain events, 

indicating the need to recalibrate the sensors. In addition, RH records were evaluated for 

consistency on rainy days, when RH values should typically exceed 95%. 

A rigorous data filtering process was applied, retaining only those dates with complete 

records for all variables required for ETo estimation (Equation 1). This ensured 

homogeneity across all sites. Once homogenized, the data were subjected to the Shapiro–

Wilk test to assess the normality of distributions for subsequent analyses. To identify 

relationships between sites, a comparative analysis of climatic variables was performed 

using the non-parametric Kruskal-Wallis test (Alvo & Yu, 2018; Conover, 1999), 

followed by pairwise comparisons using the Bonferroni method using a significance level 

of 0.01 (α = 0.01 indicates a 1% maximum probability of committing a Type I error across 

all comparisons when performing multiple statistical tests). This approach provided a 

robust evaluation of whether significant differences existed among sites. The same data 

filtering process was applied for the cluster analysis, ensuring that only data common to 

all sites were used. The sites were then normalized and grouped, and a distance matrix 

was calculated. A dendrogram based on site altitude guided the selection of site groups 
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(Kassambara, 2017). The optimal number of clusters was determined using the Elbow 

method, which suggested K=5 (K represents the number of clusters into which the data 

was divided), indicating that the data naturally grouped into five distinct clusters (Syakur 

et al., 2018; Thorndike, 1953). Hierarchical clustering then identified the four final site 

groups. 

3.6.  Bias correction of reanalysis-based ETo estimates 

To improve the accuracy of ETo estimates derived from reanalysis data (ETo rean) at both 

individual sites and cluster levels and to support the subsequent application of gridded 

data for regional ETo estimation (Céspedes et al., 2025; Garbanzo, Céspedes, et al., 2024, 

2025; Garbanzo, do Rosário Cameira, et al., 2025), four correction methods were 

implemented. Rather than adjusting the underlying meteorological variables used in the 

calculation of ETo, these correction techniques were applied directly to the reanalysis-

based ETo estimates (Paredes, Martins, et al., 2018). The corrections methods included: 

linear model (LM) adjustment, slope correction, robust linear modelling, and simple bias 

correction. Each correction was applied at both the individual site level and across groups 

of sites defined by the cluster analysis. Further details on each correction method are 

provided below: 

(A) The adjusted linear model correction (ALMc) involved fitting a linear regression 

between ETo rean (𝑦) and ETo obs (𝑋) as follows: 

y = β0 + β1 ∙ X + ε (9) 

where β0 is the regression intercept, β1 is the slope, and 𝜀 represents random error 

term (Bapat, 2012).  
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The resulting intercept and slope values were then used to adjust the ETo for each site. 

The ETo rean values were corrected for both systematic bias and scale error 

(Montgomery & Runger, 2011) by subtracting the intercept and dividing by the slope.  

 

(B) The slope correction (Sc) method involved fitting a simple linear regression (LM) 

model between the ETo rean and ETo obs values, with the intercept of 0 (𝛽0 = 0). Once 

the model was fitted, the slope was calculated and applied as a correction factor. Each 

ETo rean value was adjusted by dividing it by the estimated slope (ETo / slope = 

ETo rean_adjusted) (Bapat, 2012). This correction was applied individually to each site 

and aimed to compensate for systematic bias identified in the relationship between 

reanalysis and observed data.  

 

(C) The robust linear model correction (RLMc) followed a similar principle to the slope 

correction, but employed a robust linear regression instead of the ordinary least 

squares method. Unlike standard linear regression, which minimizes the sum of 

squared residuals, RLMc minimizes a loss function that is less sensitive to large 

deviations (Bapat, 2012; Huber & Ronchetti, 2009). In this study, the Huber M-

estimator was used, implemented through the 'rlm' function in the R software version 

2025.05.1 +513. Fitting was carried out using integrated weighted least squares 

(IWLS). The Huber function addresses a convex optimization problem and provides 

parameter estimates that are more robust in the presence of outliers. As with the slope 

correction, the new 𝛽1
𝑟𝑙𝑚 (means the updated or robust slope coefficient obtained 

from this Huber-based fitting procedure) was used to fit ETo rean, reducing the 

influence of extreme values on the correction process, which are common in tropical 

regions. Therefore, the corrected ETo rean is estimated as follows: 
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ETo rean corr =
ETo rean

β1 rlm
 (10) 

(D) A simplified bias correction was applied to adjust ETo rean at different sites. The 

simplified BIAS correction (BIASc) was calculated as follows: 

BIASc =
1

n
∑(ETo rean,i − ETo obs,i)

n

i=1

 (11) 

where n is the number of observations per site, 𝐸𝑇𝑜 𝑟𝑒𝑎𝑛,𝑖 represents the reanalysis 

values for the i-th observation, and 𝐸𝑇𝑜 𝑜𝑏𝑠,𝑖 is the corresponding observed value. The 

new estimated ETo rean_corrBIAS was calculated by subtracting BIASc from each daily 

ETo rean values. This correction aimed to eliminate systematic deviations inherent to 

the original estimates.  

3.7.  Accuracy assessment 

To assess the accuracy of the tested approaches, a set of goodness-of-fit indicators 

(Paredes et al., 2021; Pereira et al., 2015) was employed to compare the observed (Oi = 

ETo obs) and estimated (Pi =ETo PMT or ETo REAN) values. The regression coefficient (b0) of 

a forced-to-the-origin (FTO) linear regression was used to assess the proportionality 

between the estimated and observed ETo values. A value of b0 close to 1.0 indicates that 

the estimated and observed ETo values are statistically similar. A b0 < 1 suggests 

underestimation, while a b0 >1 suggests overestimation. The coefficient of determination 

(R2) from an ordinary least squares (OLS) linear regression was used to assess the degree 

of dispersion of the Oi and Pi pairs along the regression line. R2 represents the proportion 

of variance in the observed data that is explained by the estimation approach. Values of 

R2 approaching 1 indicate a strong linear relationship between the observed and predicted 

values, and hence a better model fit. To quantify estimation errors, the root mean square 
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error (RMSE) was calculated, providing an overall measure of the differences between 

Oi and Pi. Additionally, the normalized root mean square error (NRMSE, %) was 

calculated as the RMSE divided by the mean of the observations (𝑂̅). Lower RMSE 

and/or NRMSE values indicate greater estimation accuracy. Two further indicators were 

used to assess the systematic bias of the estimates, the BIAS and the percentage bias 

(PBIAS, %). BIAS was calculated as the average difference between the observed and 

predicted values, while PBIAS was obtained by dividing BIAS by the sum of the Oi. The 

positive values of BIAS and PBIAS indicate a tendency towards overestimation, whereas 

negative values indicate underestimation. Values close to zero suggest lower systematic 

bias in the model's predictions (Montgomery & Runger, 2011). All goodness-of-fit 

indicators were calculated using R statistical software (R Core Team, 2024). 

3.8.  Spatial variability of ETo in Guinea-Bissau 

As Figure 1 clearly shows, there are few weather stations in the country, most of which 

are in western Guinea-Bissau. Furthermore, the distribution of stations varies greatly 

between regions. Following a thorough evaluation of the two reanalysis datasets, the one 

demonstrating superior performance was selected to estimate ETo at all gridded centroids 

across the country, to overcome this lack of data. 

Initially, ETo was calculated using the raw reanalysis data. These values were 

subsequently corrected using the most appropriate method identified in the study, with 

adjustments applied to each centroid based on its proximity to the most influential weather 

station. The mean annual cumulative ETo for the period 2021–2023 was then estimated 

and mapped using ordinary kriging. Spatial autocorrelation analysis was conducted using 

the Global Moran's I statistic, together with Z-score and P-value calculations for the 

annual ETo (Table 5.S8), following a methodology similar to that used for soil salinity 
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mapping by (Garbanzo, Céspedes, et al., 2025). All special analyses were carried out 

using ArcMap 10.8.2 and the Geostatistical Analyst (GS+) tool. In addition, RStudio 

version 2025.05.1 +513 was used to compute the goodness-of-fit indicators for the 

interpolated maps.  

4. Results and discussion 

4.1.  QAQC assessment 

The results of the tests for mean homogeneity, trend, and variance homogeneity of the 

ground-truth data relative to Tmax and Tmin, RH, and u2 are shown in Table 5.2. The results 

of the Mann–Kendall test showed that none of the variables exhibited statistically 

significant trends, as the z-values were close to zero and the p-values were greater than 

0.05. The Wilcoxon Rank-Sum test was then used to compare the central tendencies of 

the data from different locations. All variables yielded p-values above the 0.05 

significance threshold, indicating that there were no significant differences in median 

values between the locations being compared. The analysis of the equality of variances 

across different locations (Levene's test) showed that all p-values exceeded 0.05, 

suggesting homoscedasticity (equal variances) across the dataset. Overall, the results of 

the statistical tests demonstrate that the analyzed meteorological variables are stable over 

time and comparable between locations. They also show that the variables exhibit 

consistent variability and are unaffected by outliers or measurement errors at all sites. 

Therefore, they can be used to estimate ETo. 
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Table 5.2. Statistical test applied-mean homogeneity (Mann-Kendal test), trend analysis 

(Wilcoxon rank-sum test), and variance homogeneity (Levene’s test) for 

weather variables used in for calculation the ETo in Guinea-Bissau.  

Variable 
Mann–Kendall Test Wilcoxon Rank Test Levene’s Test 

Z-Value p-Value Rank–W p-Value F-Value p-Value 

RHAvg 0.09 0.47 124.70 0.43 1.56 0.27 

RHMax 1.22 0.25 96.30 0.27 3.51 0.30 

RHMin 0.07 0.55 141.10 0.52 3.14 0.34 

Tavg 1.02 0.44 97.40 0.37 0.58 0.54 

Tmax 1.57 0.21 77.05 0.14 1.39 0.47 

Tmin −0.07 0.56 133.90 0.62 1.17 0.44 

Wind speed 1.64 0.11 68.10 0.07 2.94 0.23 

Additionally, Rs was checked and corrected as necessary, and examples of this correction 

are presented in Figure 5.3. These examples demonstrate the need for Rs correction due 

to inadequate pyranometer sensor calibration. 
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Figure 5.3. Examples of daily shortwave radiation (Rs) measured data (●) and estimated 

Rso dynamics (▬) before and after correction in different locations of Guin-

ea-Bissau—Elalab (north), Malafu (central), and Cafine (south). 

4.2.  Meteorological characteristics of the studied sites 

A high variability in the different weather variables used for the calculation of ETo was 

observed among the different sites in GB (Table 5.3). The sites with the significantly (α 

= 0.01) highest temperatures were Bissora, Cacheu, and Buba. The sites with the lowest 

temperatures were Bissora, Cacheu, and Malafu. The results indicate that Bissora and 

Cacheu have the highest thermal amplitude among the studied locations, while Bubaque 

has the lowest thermal amplitude significantly (α = 0.01). This trend was similar when 

the average daily temperature difference (TD) was analyzed. From one perspective, the 
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site with the significantly (α = 0.01) highest RH value was Cafine, which was the most 

humid site in the country. On the other hand, Bissora had significantly lower RH values 

(RHmin: 49.9% and RHavg: 67.3%; α = 0.01), and was therefore considered the least humid 

site compared to the others. Buba presented contrasting humidity conditions. Djobel was 

the windiest location (u2 avg = 2.1 m s-1), while Bissora was the least windy location (u2 

avg=0.7 m s-1), both with significant differences (α = 0.01) relative to the other sites.  

Table 5.3. Weather characterization of various locations in Guinea-Bissau based on the 

mean daily maximum (Tmax), minimum (Tmin), and average temperature 

difference (TDavg); maximum (RHmax), minimum (RHmin), and average (RHavg) 

relative humidity; and average wind speed (u2 avg) for the period 2021–2023. 

Site 
Tmin Tmax TDavg RHmax RHmin RHavg u2 avg 

oC oC oC %  % % m s-1 

Cafine 22.9b 31.7d 9.5 bc 99.1a 68.9a 78.8 a 1.3c 

Malafu 21.5f 33.3bc 13.3 ab 98.6b 62.2bc 75.2 b 0.8f 

Djobel 22.5bcd 32.7c 10.8 b 98.8b 59.8cd 77.7 a 2.1a 

Enchugal 21.8de 33.1bc 12.1 ab 93.7c 57.8de 70.5 c 0.9e 

Buba 22.6cde 33.3ab 12.1 ab 99.2ab 55.8e 75.0 b 1.6c 

Elalab 22.6bc 31.9d 10.5 b 92.9cd 56.1e 71.3 c 1.7b 

Cacheu 21.5ef 33.4ab 13.2 a 92.7d 55.5e 70.1 c 1.1d 

Bubaque 24.3a 30.8e 6.8 c 92.3d 67.5ab 76.8 ab 0.8f 

Bissora 20.3f 34.2a 14.8 a 89.4e 49.9f 67.3 c 0.7g 

S.Domingo 19.8f 33.7a 13.9a 94.8c 49.3f 71.9c 0.8f 

Quebil 22.2cd 33.2ab 11.0b 88.7e 40.4g 64.6d 0.8f 

Shp_wilk <0.01 <0.01 <0.01 <0.01 <0.01 < 0.01 <0.01 

n 492 492 492 492 492 492 492 

α < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 

Note: means followed by the same letter do not represent significant differences; n = number of common 

days for all sites compared. α = Bonferroni test with an α = 0.01 using Kruskal–Wallis test. Shp_wilk = 

Shapiro–Wilk test. 

The dendrogram generated by the cluster analysis identified three distinct groups based 

on the accumulated precipitation and ETo at each site (Figure 5.4). These groups were 
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formed according to their position in the dendrogram and the geographical proximity of 

the sites. The first cluster included Buba and Cafine; the second included Malafu, Cacheu, 

and Enchugal; and the third included Elalab, Djobel, and S. Domingos. These clusters 

represent the southern, central and northern regions, respectively. As mentioned above, 

Bissora presented contrasting weather conditions, and did not fit into any cluster within 

the analysis. Its inland-like location resulted in distinct weather characteristics. Bubaque 

was also not included in the cluster analysis as it is located on an island. Quebil was 

excluded from the cluster analysis due to a lack of observations relating to sensor 

malfunction problems, which began in mid-2022. However, it was included in the ETo 

estimates using the available weather data.  

In Guinea-Bissau, there is considerable climatic variability between different sites and 

this study demonstrated sensitivity in identifying moist sub-humid and humid areas, 

regions with greater thermal amplitude, and sites with variable wind patterns (Table 5.2). 

Tropical climates are variable, because they are frequently influenced by tropical storms 

(Broccoli & Manabe, 1990; Hartshorn, 2013). These regions typically experience two 

well-defined seasons, namely the rainy season and the dry season, but with high 

interannual variability (Frank & Young, 2007). Subsistence agriculture is highly 

dependent on the behavior of the rainy season, particularly for the Mangrove Swamp Rice 

production in the country (Garbanzo, Cameira, et al., 2024; Garbanzo, do Rosário 

Cameira, et al., 2025; Linares, 2002). However, this seasonality is becoming increasingly 

unpredictable, with global warming exacerbating variability, particularly in rainfall 

distribution patterns and intensity (Mendes et al., 2025; Mendes & Fragoso, 2023). As a 

result, these areas are becoming increasingly vulnerable, making sustainable agricultural 

production more challenging (Céspedes et al., 2025; Temudo & Cabral, 2023). 

Appropriate management of water resources is therefore necessary. 
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.  

Figure 5.4. Dendrogram of a hierarchical clustering of the selected sites. Clustering was 

performed using cumulative rainfall and ETo for 2021-2023 and site elevation, 

considering their spatial distribution in Guinea-Bissau. 

4.3. FAO-PM ETo using temperature data only 

As previously stated, one of the new approaches for humid climates consisted of 

optimizing the aD value used in the prediction of Tdew from Tmean. The results showed that 

aD values ranged from 2.5 oC to 5.0 oC, depending on the location, with an average aD of 

4.8 oC when used alongside with u2 avg. When the u2 def was used instead, the optimized 

aD values ranged from 1.5 to 5.0 oC, with an average of 4.5 oC. These results are consistent 

with those reported by (Qiu et al., 2021) for humid climates in China, with aD values of 

5.14±1.33ºC. Similarly, (Paredes, Fontes, et al., 2018) reported aD values ranging from 

1.5 oC to 4 oC for the humid oceanic islands of the Azores, Portugal.  

The new cluster-focused MLR equations, which were derived from observed weather 

datasets by minimizing RMSE, are presented in Table 5.4. The statistical indicators 
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related relating to the test and validation datasets are presented in Table 5.S3 of the 

Supplemental material. All the considered variables (TDavg, u2 avg, and HRavg) contribute 

differently to the estimation of kRs but play complementary roles. As with the global 

(Equation 6) and climate-focused MLR equations (Equations 7a and 7b), and in line with 

the findings of (Paredes & Pereira, 2019), TDavg has a negative regression coefficient 

associated with the loss of long-wave radiation when TDavg is high. The impact of u2 avg 

on kRs values is positive and may be related to the transport of air moisture masses in 

windy conditions, leading to a clearer atmosphere. The impact of RHavg on the kRs value 

is negative, representing the influence of cloudiness and air moisture. This is consistent 

with previous findings in other parts of the world (Almorox et al., 2018; Paredes, Fontes, 

et al., 2018; Paredes & Pereira, 2019; Pereira et al., 2025). It should be noted that the 

cluster-focused MLR regression to the origin presents a small range of 0.409–0.416, 

while the regression coefficients are relatively similar among the clusters (Table 5.4). The 

other two locations, which were not within the three clusters, present slightly different 

regression coefficients. Table 5.4 shows the kRs values estimated for each cluster. 
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Table 5.4. Cluster-focused optimized predictive multi-linear regression equations for estimating kRs values and respective values. 

Cluster  Predictive equations kRs 

Minimized  

RMSE 

(ºC-0.5) 

Eq. 

1 Cafine, Buba, Quebil kRs = 0.410097 − 0.009323 TDavg + 0.021961 u2avg
− 0.001902 RHavg 0.196 7.9 × 10−7 (12) 

2 Enchugal, Cacheu, Malafu kRs = 0.415814 − 0.009169 TDavg + 0.022404 u2avg
− 0.001868 RHavg 0.183 1.1 × 10−6 (13) 

3 Djobel, Elalab, S. Domingo kRs = 0.409351 − 0.009369 TDavg + 0.021829 u2avg
− 0.001911 RHavg 0.208 5.6 × 10−7 (14) 

- Bissora kRs = 0.418652 − 0.009110 TDavg + 0.022572 u2avg
− 0.001855 RHavg 0.174 9.4 x 10-7 (15) 

- Bubaque kRs = 0.416080 − 0.009035 TDavg + 0.022784 u2avg
− 0.001840 RHavg 0.232 2.9 x 10-6 (16) 

kRs – short-wave radiation empirical adjustment coefficient (°C-0.5); TDavg – long term average temperature difference, i.e. (Tmax – Tmin ); u2 avg – long term average 

local wind speed (m s-1) measured at 2 m height; RHavg – long term average relative humidity.  
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The goodness-of-fit indicators for the different approaches tested for estimating ETo using 

ground-truth temperature and u2 data, i.e. the FAO-PMT ETo approach, are shown in 

Table 5.5, and the ranges of each indicator are presented in Table S4. It was found that 

the climate type of the site influenced the results. For the moist sub-humid locations, i.e. 

those sites located in the north of GB, the best predictor for kRs was, as expected, the value 

derived from the optimized LMR value (Table 5.5); for u2 the best predictor was the 

regional/local average u2 (u2 avg) value. This combination resulted in no tendency to over- 

or underestimation of ETo (b0 = 0.98) and yielded acceptable errors in estimates, with 

RMSE of 0.80 mm d-1 and NRMSE of 16.5%. However, small and no significant 

differences in estimates were found obtained when u2 def was a used as predictor, with RMSE 

of 1.08 mm d-1 and NRMSE of 22.5%.  

The second-best approach was to use either the global (Eq. 6) or the climate focused MLR 

(Eq. 7a and 7b) to estimate kRs in combination with the u2 def. For this set of sites, there 

was no significant difference (p<0.05) between using the climate-focused equations and 

using the global MLR, with RMSE of 1.04 mm d-1 and 1.00 mm d-1, and NRMSE of 

21.5% and 20.5%, respectively (Table 5.5). The results also showed that using u2 avg did 

not improve predictions of kRs when either global or climate-focused MLR equations are 

were used. This is because it led to an increase in RMSE and NRMSE, which was not 

only statistically significant but also resulted in a large underestimation of ETo, with b0 

values decreasing to 0.82 and 0.79 when the global and climate-focused MLR equations 

were used, respectively.  

  



195 

 

Table 5.5. Goodness-of-fit indicators used to compare PM-ETo with ETo PMT when using 

Tmin or the Tmean a predictor of Tdew, when kRs was calibrated for each site, 

when computed with the global Equation 6, or with the climate-focused 

Equations 7a and 7b, when using the default or the average local u2 value, for 

the eleven sites of Guinea-Bissau. 

Climate 

Predictors Goodness of fit indicators 

Tdew kRs u2 b0 * R2 * 
RMSE * 

(mm d-1) 

NRMSE * 

(%) 
BIAS * 

PBIAS * 

(%) 

M
o

is
t 

su
b

-h
u

m
id

 

Tmin 

Global  
Default 0.93 abc 0.96 a 1.00 ab 20.59 ab -0.28 bc -5.83 abc 

Avg 0.82 ab 0.97 a 1.13 ab 23.62 ab -0.78 a -16.40 ab 

Climate 
Default 0.90 abc 0.96 a 1.04 ab 21.5 ab -0.42 abc -8.4 abc 

Avg 0.79 a 0.97 a 1.24 a 25.73 a -0.91 ab -19.17 a 

Optm 
Default 1.07 c 0.97 a 1.08 ab 22.53 ab 0.43 c 9.28 c 

Avg 0.98 bc 0.98 a 0.80 b 16.49 b -0.01 bc -0.33 bc 

H
u

m
id

 

Tmin 

Global  
Default 0.92  abcde 0.97 a 0.87 abcde 18.61 abcde -0.36 abcde -6.78 abcde 

Avg 0.82 abc 0.98 ab 1.03 abc 22.01 abc -0.76 abc -16.22 abc 

Climate 
Default 0.97 bcde 0.97 ab 0.86 abcde 18.32 abcde -0.06 bcde -1.22 bcde 

Avg 0.88 abcde 0.98 ab 0.87 abcde 18.63 abcde -0.48 abcde -10.22 abcde 

Optm 
Default 1.07 e 0.97 ab 0.91 abcde 19.31 abcde 0.38 e 8.12 e 

Avg 0.98 cde 0.98 ab 0.68 de 14.60 de -0.01 cde -0.21 cde 

Tmean - 2 

Global  
Default 0.86 ab 0.98 ab 1.12 ab 23.82 ab -0.86 ab -18.33 ab 

Avg 0.78 a 0.98 ab 1.20 a 25.43 a -0.97 a -20.68 a 

Climate 
Default 0.86 abcd 0.98 ab 0.95 abcde 21.11 abcde -0.57 abcd -12.15 abcd 

Avg 0.85 abcd 0.98 ab 0.99 abcde 21.14 abcde -0.66 abcd -14.03 abcd 

Optm 
Default 0.97 bcde 0.98 ab 0.72 bcde 15.42 bcde -0.09 bcde -1.83 bcde 

Avg 0.96 abcde 0.98 ab 0.71 cde 15.10 cde -0.14 abcde -2.95 abcde 

Tmean-aD 

(aD opt) 

Global  
Default 0.91 abcde 0.98 ab 1.02 abcde 16.64 abcd -0.33 abcde -6.91 abcde 

Avg 0.82 abcd 0.98 ab 1.02 abcd 21.72 abcde -0.75 abcd -15.91 abcd 

Climate 
Default 0.95 abcde 0.98 ab 0.72 abcde 15.31 cde -0.15 abcde -3.10 abcde 

Avg 0.91 abcde 0.98 ab 0.78 cde 16.63 abcde -0.33 abcde -6.91 abcde 

Optm 
Default 0.99 de 0.98 ab 0.70 cde 14.90 cde 0.03 de 0.57 de 

Avg 0.99 cde 0.98 b 0.67 e 14.33 e 0.02 cde 0.47 de 

Tdew = dew point temperature; kRs =shortwave radiation empirical adjustment coefficient; u2 = wind speed 

at 2 m height; Global = global multiple linear regression (Equation (6)); Climate = climate-focused multiple 

linear regression (Equations (7a) or (7b)); Optm = cluster-focused multi-linear regression (Equations (12)–

(16)); Notes: means followed by the same letter are not significantly different (α < 0.05) according to the 

Kruskal–Wallis test; The most effective approach is highlighted in grey, while bold numbers indicate the 

least error in estimates.  
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The results for the humid sites (Table 6.5) showed that, similarly to the moist sub-humid 

sites, the best predictor was the one resulting from the optimized MLR combined with 

the u2 avg. However, there was no significant difference (p<0.05) in the RMSE values 

using the tested Tdew predictors, i.e., Tmin or the adjusted Tmean with either aD=2 or 

calibrated aD value, with RMSE of 0.68 mm d-1, 0.71 mm d-1, and 0.67 mm d-1, 

respectively. When analyzing the results in terms of NRMSE, using the adjusted aD value 

led to statistically different values, but there were few improvements in the results: 

NRMSE was 14.3%, compared to 14.6% with Tmin and 15.1% with Tmean-2. There were 

also few differences in the other goodness-of-fit indicators, except for b0, which showed 

a clear tendency towards underestimation when u2 avg was used with either the global or 

the climate-focused MLR. These results showed that optimizing the predictors leads to 

very good results, but this approach is only possible when a good data set is available, 

hence uncommonly. Moreover, for the optimization approach (L-BFGS-B) applied in all 

the studied sites (Supplementary S1), there was a general tendency for slight 

underestimation when using u2avg, distinguishing these results from other studies that 

relied on trial-and-error calibration of the Tdew and Rs predictors (Paredes et al., 2020; 

Raziei & Pereira, 2013; Todorovic et al., 2013). 

The global LMR and the u2 deaf, results showed the advantage of optimizing the aD value 

when using Tmean-aD as Tdew predictor in relation to the use of the aD = 2 ºC, as the latter 

leads to a clear under-estimation of ETo (b0=0.88) and higher RMSE (0.89 mm d-1 vs 0.71 

mm d-1). The use of Tmin as the Tdew predictor also revealed also good results with an 

RMSE of 0.83 mm d-1. Overall, the results for the humid climates showed a limited 

advantage in adjusting the Tmean as a Tdew predictor, when combined with the use of the 

global or climate-focused equations using through the u2 default value, with NRMSE 

ranging from 16.6% to 23.8% and 15.3% to 21.1%, respectively.  
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The results of using the climate-focused LMR equations showed that these had an 

advantage over the global equation, but it was not statistically significant (α > 0.05). This 

advantage resulted from a decrease in the underestimation, as well as in the RMSE and 

NRMSE. In such cases, it is beneficial to use Tmean rather than Tmin the Tdew predictor 

considering that there are lower errors in the ETo estimates. As with the global LMR, 

there is a slight advantage in adjusting the aD value. However, the improvements were 

not significant, and therefore, the Tmin should be used as a predictor of Tdew in humid 

climates, with these findings agreeing with those of FAO56rev (Pereira et al., 2025). 

Selected examples of comparison results between ETo PMT and PM-ETo when the analysis 

is focused at the cluster level are shown in Figure 5.5 and Table 5.S5. Examples also 

include the locations that were excluded from, the clusters Bissora (moist sub-humid) and 

Bubaque (humid). The scatter plots in Figure 5.5 demonstrate the strong correlation 

between ETo PMT using u2 def and the various MLR equations, as well as PM-ETo. The 

plots show that ETo PMT slightly underestimates PM-ETo in Clusters 1 and 2, as well as in 

Bissora, when either the global or climate-focused equations are used to predict kRs. 

Furthermore, using the cluster-focused equations did not offer any advantages in these 

locations as the RMSEs were higher. Conversely, Cluster 3 and Bubaque show high 

underestimation when using the same predictors for kRs estimation, demonstrating the 

advantage of using cluster-focused equations in this case.  

Table 5.S5 provides the results of the goodness-of-fit indicators for all approaches when 

the analysis was performed at the cluster level. The results show, as in the previous 

analysis, that the best approach was to optimize the predictors of Tdew and kRs (i.e. aD and 

cluster-focused MLR). Therefore, the results are discussed with a focus on the previous 

simplified approaches. The first cluster included only locations with humid climates, and 

the results showed that using Tmin relative to Tmean-2 as a predictor of Tdew was 
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advantageous. Additionally, there was a clear advantage from using the climate-focused 

MLR alongside u2 def. For the second cluster, which included both humid and moist sub-

humid locations, the results showed that the best approach was to use Tdew predictors 

according to the AI, alongside with the climate-focused MLR equations and u2 def. The 

use of u2 avg yielded a higher RMSE and a stronger tendency to underestimate ETo. The 

third cluster comprised only moist sub-humid locations and showed the poorest results in 

terms of errors of all the clusters. In this case, the second-best approach was to use u2 def 

alongside either the global or climate-focused MLR, as there were no significant 

differences. For Bissora (moist sub-humid), the second-best approach was to use the 

climate-focused equation with u2 def, while for Bubaque, despite being classified as humid, 

Tmin was a better predictor of Tdew, with u2 def being the best predictor over u2 avg. 
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Figure 5.5. Comparing ETo PMT with PM-ETo for each cluster and locations when using 

Tdew=Tmin, the default u2 value and the different MLR equations for estimating 

kRs. Included are the FTO regression equation, the OLS determination 

coefficient R2 and the RMSE. 
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As mentioned previously, the cluster-focused optimized MLR equations using numerical 

models outperformed the global and climate-focused MLR equations for the set of sites, 

whether considering individual sites or clusters (Figure 5.6). Some sites exhibited similar 

RMSE values when using the climate-focused MLR and the global equation. However, 

the box-and-whiskers plot revealed variations where the metrics overlapped, indicating 

that while these standard approaches may be effective for certain sites, they are not 

suitable for most of them (Figure 5.6). The metrics indicate that the best adjustments for 

estimating ETo using temperature alone were achieved by applying either Tdew=Tmin or 

Tdew = Tmean – aD criterion with optimized aD, u2 def, and using the cluster-focused MLR 

to estimate kRs for each site or group of sites. The results for Tmin showed a wider spread 

of RMSE values (Figure 5.6), possibly because humid and moist sub-humid sites were 

considered together. In contrast, for the other two predictors using Tmean, the spread was 

smaller, because only humid sites were considered. 
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Figure 5.6. Box-and-whiskers plots of the root mean square errors of ETo estimations 

using the PMT approach with different predictors for Tdew (Tmin (blue), Tmean-

2 (orange), or Tmean−aD with aD optimized (green)), using either the default 2 m 

s−1 or the local average wind speed as predictors, and using as the kRs predictor 

either the global, climate-focused or the cluster-focused equations, for the 

various sites in Guinea-Bissau. Means followed by an asterisk (*) are 

significantly different (α < 0.05) and those followed by two asterisks (**) are 

highly significantly different (α < 0.01) according to the Kruskal–Wallis test. 

The results of the current study when using any of the MLR equations were within the 

range of those reported for several sites in Africa, such as the study performed by (Djaman 

et al., 2016) in Tanzania and Kenya when using the PMT approach with u2 avg and the 

default predictors of Tdew and Rs (RMSE ranging 0.64 mm d-1 to 1.09 mm d-1). A study 

performed in Côte d’Ivoire (Koudahe et al., 2018) reported RMSE ranging from 0.43 mm 

d-1 to 0.89 mm d-1 when using PMT with the default values for the different predictors 

(Allen et al., 1998). A study performed at several sites in Ghana (Landeras et al., 2018), 

reported RMSE values ranging from 0.58 to 1.11 mm d-1 when using PMT, while RMSE 
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decreased when using Artificial Neural Networks (ANNs) and Gene Expression 

Programming (GEP) to 0.53-0.84 mm d-1 and 0.51-0.79 mm d-1, respectively. The study 

performed in humid climates of Uganda by (Djaman et al., 2017) tested several 

approaches to cope with missing data and reported that the PMT with default values for 

the predictors of kRs and Tdew and u2 avg outperformed the other approaches with an RMSE 

ranging from 0.69 mm d-1 to 1.34 mm d-1. Better results were reported in a study applied 

to Burkina Faso with an RMSE 0.53 mm d-1 and a tendency to overestimate ETo 

(PBIAS=6%) when the PMT approach was used, optimizing the Rs and Tdew predictors 

and using the u2avg value (Yonaba et al., 2023). The globally applied study by (Almorox 

et al., 2018) reported a RMSE for several humid locations in Hungary, ranging from 0.63 

mm d-1 for Aw of climates as in GB, when using the default predictors for Tdew and u2 

and calibrated or default kRs values. In the current study, using the same approach, RMSE 

was 0.79 mm d-1 and 0.85 mm d-1 for humid and moist sub-humid sites, respectively. 

(Trajkovic et al., 2020) for several humid locations in Hungary, reported a wide range of 

RMSE from 0.10 mm d-1 to 0.81 mm d-1 when using the default kRs and Tdew predictors 

values with u2 avg. Other studies such as those by (Todorovic et al., 2013) and (Raziei & 

Pereira, 2013) for sub-humid and humid climates in the Mediterranean basin and in Iran, 

respectively, also reported better results when calibrating kRs, u2 avg, and using the 

different Tdew predictors. Furthermore, the results of the current study when using the 

LMR equations with the PMT approach are in line with those reported by (Paredes et al., 

2020) for the humid and moist sub-humid climates.  

Enhancing the accuracy of ETo estimation can be challenging, particularly when 

analyzing sites with high climate variability and limited weather data availability. The 

FAO-PMT ETo approach, which uses global and climate-focused MLR equations, 

showed good accuracy, particularly when considering each site individually, 
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demonstrating that there is no significant advantage in developing cluster-focused MLR 

equations or optimizing aD. However, when performing the analysis at the cluster level, 

there was a consistent trend toward improved performance with this optimization, despite 

the robustness of the approach needing to be further tested using a wider set of weather 

data. Overall, due to the simplicity of the approach, the use of the global and/or the 

climate-focused LMRs as predictors of kRs is advocated despite their tendency to 

underestimate ETo, in combination with the u2 default when it leads to less underestimation. 

Furthermore, these approaches demonstrated their potential as valuable tools for 

improving water use efficiency in the absence of accurate data, as they can serve as a 

baseline for estimating water and salt balances using different models (Garbanzo, 

Céspedes, et al., 2024; Garbanzo, do Rosário Cameira, et al., 2025; Liu, Paredes, et al., 

2022; Ramos et al., 2024). Future applications of the method would benefit from 

enhanced ground observation networks, particularly in data-scarce regions like central 

and eastern GB, to strengthen calibration and reduce potential uncertainties. 

4.4.  ETo estimation using different reanalysis datasets  

Analysis of wind speed data from AgERA5 (u2 ERA5) and MERRA-2 (u2 MERRA) revealed 

significant discrepancies with u2 observations (results not shown), as reported in previous 

studies assessing reanalysis data (Martins et al., 2017; Paredes, Martins, et al., 2018). This 

led to ETo estimation using reanalysis data that excluded this variable. Two approaches 

were then used, one replaced u2 ERA5 and u2 MERRA with the u2 def value, while the other 

used the u2 avg value. The results show that the estimation of ETo using raw AgERA5 

reanalysis data (ETo ERA5) exhibited significant variability compared to the ETo values 

calculated from ground truth (observed, ETo OBS) data (Figure 5.7 and Figure 5.S7), 

particularly when the default u2 was used in the ETo ERA5 estimations.   
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Figure 5.7. Comparison of ETo estimated with ground truth (observed) data and with AgERA5 and 

MERRA-2 reanalysis datasets when raw (UNc) data were used and after using the diverse bias 

correction methods (Sc, RLMc, Biasc, and ALMc). The local average (u2 avg) or the default value 

of 2 m s−1 (u2 def) was used instead of the reanalysis wind speed data. (UNc = uncorrected bias; 

bias correction methods: Sc = slope, RLMc = robust linear model; Biasc = bias correction; 

ALMc = adjusted linear model). Means followed by an asterisk (*) are significantly different 

(α < 0.05) and those followed by two or three asterisks (** or ***) are highly significantly 

different (α < 0.01) according to the Kruskal–Wallis test, NS = not statistically significant. 
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Using raw (uncorrected) reanalysis data with u2 avg to estimate ETo showed a wide range 

of regression coefficients b0 (0.90 – 1.18) (Table 5.S6) and PBIAS (-7.72 – 21.14) (Figure 

5.7), but most sites did not show an under- or overestimation tendency (b0 near 1.0 and 

PBIAS near 0%) (Figure 5.S7). When u2 def was used, however, the b0 and PBIAS values 

varied in a wider range, with two groups of sites, one with an under-estimation tendency 

(b0<0.90, PBIAS), and the other with an over-estimation tendency (b0>1.10, PBIAS). In 

both approaches, R2 was generally above 0.95, showing that ETo ERA5 was able to explain 

most of the ETo OBS variance. When analyzing the errors due to using u2 avg, the RMSE 

ranged from 0.84 to 1.48 mm d-1. This value decreased slightly when u2 def was used 

instead (RMSE from 0.80 to 1.46 mm d-1), corresponding to NRMSE ranging from 17.9% 

to 31.9% and 17.9% to 31.8%, respectively.  

After applying different bias correction methods to the ETo ERA5 data, the results showed 

a general decrease in the RMSE values and as expected, in PBIAS and BIAS (Figure 5.7) 

and as well as in b0 (Table 5.S6). The analysis of the BIAS and PBIAS metrics revealed 

that BIASc and ALMc effectively removed the under- and over-estimation of the ETo ERA5 

data. However, the ALMc ability to explain the variability in the data was lower than that 

of the other bias correction methods, suggesting lower predictive performance. This is 

evident in the decrease in R2 from 0.96 to 0.90 and 0.92 when using u2 avg or u2 def, 

respectively (Table 5.S6). Although ALMc removed the bias of the reanalysis data, it 

failed to reduce the estimation errors. 

Analyzing the set of goodness-of-fit indicators (Figure 5.7 and Table 5.S6), it was found 

that the different bias correction methods exhibited further differences in accuracy, with 

the simple BIASc method performing the best. The average RMSE values were very 

similar for BIASc (1.05 mm d-1 or 0.99 mm d-1 when using u2 avg and u2 def, respectively), 

RLMc (1.04 mm d-1 or 0.97 mm d-1), and Sc (1.04 mm d-1 or 0.98 mm d-1). This small 
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difference in NRMSE indicated that these bias correction methods were not significantly 

different (α <0.05). Similarly, the mean NRMSE values were 22.0%, 21.7%, and 21.7% 

respectively (Table 5.S6). For ALMc, the bias correction was successfully applied; 

however, the RMSE was higher (> 1.3 mm d-1) than that of the other correction methods 

in both AgERA5 and MERRA-2, indicating lower accuracy. Using the u2 def value 

resulted in slightly higher accuracy for all bias correction methods, but this was not 

statistically significant (NS). Overall, the BIASc was the simplest and most effective, 

leading to significant differences (α = 0.05) compared to using raw data. This makes it a 

practical option for calculating ETo using AgERA5 and MERRA-2 data with either u2 avg 

or u2 def.  

Using raw MERRA-2 data to estimate ETo (ETo MERRA) produced greater variability and 

a marked under-estimation (Figure 5.7) and less precision (Table 5.S6). Comparing the 

two data sets (Figure 5.7), the superiority of using raw AgERA5 becomes evident, i.e., 

the results indicate that MERRA-2 underperforms compared to AgERA5 . Similar results 

were reported by (Soulis et al., 2025) for the estimation of annual ETo in Greece. The 

differences in performance between the reanalysis datasets may be due to the coarser 

resolution of the MERRA-2 dataset, which makes it difficult to adequately capture 

climate variability within GB. When u2 avg and u2 def were used, the latter performed 

slightly better but did not reach statistical significance.  

The results show that, for operational use, the ETo MERRA needs to be bias-corrected (see 

Figure 5.7). As with ETo ERA5, the results also highlight that ALMc and BIASc were the 

only methods that effectively removed the bias. The RMSE was 1.57 mm d⁻¹ when raw 

data were used, and it decreased to 1.38 mm d⁻¹ with the ALMc method and to 1.01 mm 

d⁻¹ with the BIASc method. As with the AgERA5 data, ALMc's ability to explain the 

variability in the data was lower than that of the other bias correction methods, showing 
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a smaller reduction in RMSE (see Table 5.S6). BIASc was the best bias correction 

method, as it improved all accuracy indicators.  

The results of the current study using raw reanalysis data are comparable to those reported 

in the literature. Tiruye et al., (2024) reported a tendency for overestimation when using 

ERA5-Land for the Tana Basin in Ethiopia, which has a subtropical climate, with RMSE 

ranging from 0.54 mm d-1 to 1.82 mm d-1. Lopez-Guerrero et al., (2023) reported RMSE 

ranging from 0.49 mm d-1 to 0.88 mm d-1 for Egypt, Morocco, and Tunisia. Nouri & 

Homaee, (2022) reported an NRMSE ranging from 11% to 20% for ETo estimates on a 

monthly timescale for the humid sites of Iran. Various studies have been carried out for 

Italy and Portugal. For example, (Vanella et al., 2022) reported an NRMSE ranging from 

15% to 47% when using two ERA5 products, depending on the time scale. Other studies 

carried out in Italy using ERA5-Land datasets reported a tendency towards 

underestimation and generally lower RMSE; for instance, Pelosi et al., (2020) reported 

an RMSE ranging from 0.44 to 1.04 mm d-1, with NRMSE values lower than 14%, and 

(Ippolito et al., 2024) reported RMSE ranging from 0.42 to 1.26 mm d-1. Paredes, Martins, 

et al., (2018) reported better results using ERA-Interim for mainland Portugal, with RMSE 

> 0.75 mm d-1 for most sites, combined with a tendency of underestimation. After simple 

bias correction the RMSE decreased to a range of 0.50-0.75 mm d-1 for most sites 

(Paredes, Martins, et al., 2018).  

There are few studies in the literature that have used MERRA-2 to estimate ETo. The 

results of the current study are comparable with those reported by (Nouri & Homaee, 

2022), with lower NRMSE values ranging from 10 to 20% at humid sites in Iran.  

Overall, the results of the analysis of the gridded datasets emphasize the need for bias 

correction to enhance the accuracy of ETo estimates derived from reanalysis products in 
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data-scarce regions. Furthermore, a comparison of the results from AgERA5 and 

MERRA-2 (Figure 5.7, Table 5.S6) with the FAO-PMT approach (section 3.2, Table 5.5) 

shows that the latter performs better and therefore can be used to estimate ETo when 

temperature data is available. 

The results of the current study suggest that AgERA5 data could be used with caution for 

estimating ETo, particularly when the observed weather data are unavailable. Further 

caution is needed, particularly for studying climate variability and change, as previously 

reported (Mendes et al., 2025; Mendes & Fragoso, 2023, 2024). To allow for a more 

thorough evaluation of the accuracy of the gridded dataset, it is advisable to continue 

collecting meteorological data over a longer period and between regions. The method can 

be adapted to other regions, but local ground data are key to improving accuracy. Further 

long-term studies are encouraged, particularly in areas with limited station coverage, 

where expanding or recovering weather observations could reduce uncertainties. 

4.5.  ETo mapping 

Figure 5.8 shows the spatial variability of the mean annual ETo ERA5 in the country after 

applying the best bias correction method (BIASc). The results show that the spatial 

distribution of the annual ETo presents strong spatial coherence and continuity (Table 

5.S8). The fitted exponential variogram with a nugget of 10 mm, sill of 17.8 km, and an 

extensive range of 240.3 km indicates a well-structured spatial dependence on the 

regional scale. Autocorrelation results support this, with a Global Moran’s I of 0.84, a Z-

score of 20.71, and p < 0.001, confirming significant spatial clustering of ETo values. The 

model achieved excellent annual accuracy, with errors less than 2.5% of the observed 

NRMSE mean and minimal bias (BIAS = 0.14, negligible PBIAS). These values indicate 

both high precision and negligible systematic errors in the estimation. The high R² (0.87) 
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and Spearman correlation (ρ = 0.94) further validate the model's reliability across spatial 

domains. 

 

Figure 5.8. Spatial distribution of annual ETo estimated using bias corrected AgERA5 

data, in Guinea-Bissau. 

In practice, the ETo map is consistent with the observed patterns in the country, where 

southern areas have higher temperature and ETo, while some inland locations have lower 

ETo values. This reflects the typical variability observed in tropical regions, where 

climatic and topographic conditions contribute to significant spatial differences in ETo. 

The results of this study highlight the value of gridded climate datasets such as AgERA5, 

after appropriate bias correction, for regional scale agroclimatic applications. For regions 

of the Guinea-Bissau where ground-based meteorological data are sparse, corrected 

satellite-derived ETo maps can provide important support for water management 
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planning, drought monitoring and sustainable agricultural management. However, it is 

advisable to collect more observational data to further support the findings of the current 

study. 

5. Conclusions 

The approach developed in this study is an important tool for Guinea-Bissau (GB), where 

limited government investment in sensors hinders the rapid acquisition of accurate 

meteorological data. The findings of the present study underscore that the PMT approach 

yielded more accurate ETo estimates than either of the reanalysis products, even after its 

bias correction. However, in the absence of observed temperature data, AgERA5 data 

could be used as an alternative source, although caution is advised due to known biases 

and uncertainties associated with ETo estimation from this reanalysis product. When 

using the PMT approach it can be concluded that Tmin is an adequate predictor of Tdew in 

both moist sub-humid and humid climates. Therefore, there is no need to use corrected 

Tmean to predict Tdew, as this does not significantly affect ETo estimates. Furthermore, the 

u2 default value of 2 m s-1 was found to be the best predictor when coupled with either 

the global or the climate-focused equations for estimating ETo. The newly proposed 

cluster-focused equations improve the accuracy of ETo compared to the global or climate-

focused equations but require further validation for GB. More broadly, this study 

demonstrates the suitability of the user-friendly approaches outlined in FAO56rev, 

particularly in regions where access to comprehensive weather information is limited.  

The study provides a robust framework for enhancing agricultural practices and fostering 

resilience in areas grappling with climatic and environmental challenges. In the case of 

GB specifically, the approximate datasets and tools provided by the developed 

approaches could greatly benefit organizations working to improve the country's social 
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and food security, such as international cooperation projects and GB's development 

ministries. 

However, the approach explored in this study could be further enhanced by expanding 

the ground-truth database to include more years of observations. It is important to test the 

global and climate-focused equations with more data from tropical countries, especially 

those with high rainfall and climate variability. This is particularly relevant for regions 

between 0° and 20° N latitude, which experience the greatest climate variability and have 

not been the focus of previous studies. Overall, it is essential to refine the tools further to 

improve the estimation of ETo in regions where investment in specialized equipment is 

low. Nevertheless, this work provides a foundation for calculating water and salt balances 

in MSR production in Guinea-Bissau and other West African countries where this system 

exists.  
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6. Supplementary material 

6.1.  Supplementary S1. Numerical method for deriving the cluster-focused multiple linear 

regression (MLR) equations to estimate kRs (Eq. 4)  

The goal is to minimize an objective function 𝑓(𝑘𝑅𝑠) subject to box constraints using the “L-

BFGS-B” method (Byrd et al., 1995). The objective function 𝑓(𝑘𝑅𝑠) is the RMSE calculated as a 

function of the parameter kRs. 

 

𝑚𝑖𝑛𝐾𝑟𝑠𝑅𝑀𝑆𝐸(𝑘𝑅𝑠) = 𝑓(𝑘𝑅𝑠) 

Eq. A1 

Where: 

𝑅𝑀𝑆𝐸 = root mean square error.  

𝐾𝑟𝑠 = radiation adjustment coefficient. 

Objective function  

𝑓(𝐾𝑟𝑠) = 𝑚𝑖𝑛0.05≤𝑘𝑅𝑠≤0.25 = √
1

𝑛
∑ (𝐸𝑇𝑜 𝑖 − 𝐸𝑇 𝑜 𝑃𝑀𝑇 𝑖)2

𝑛

𝑖=1
 

Eq. A2 

Where: 

𝑚𝑖𝑛 0.05≤𝑘𝑅𝑠≤0.25 = The minimization is subject to box constraints using the “L-BFGS-B” 

Algorithm.  

𝐸𝑇𝑜𝑖 = Evapotranspiration calculated with all weather variables for observation 𝑖..  
𝐸𝑇𝑜 𝑃𝑀𝑇 𝑖 = Evapotranspiration calculated using temperature difference with kRs for observation 

𝑖.  
The “L-BFGS-B” Algorithm. 

This aims to solve.  

𝑚𝑖𝑛 ∅ 𝑓(∅) 

Eq. A3 

Subject to  

∅𝐿 ≤ ∅ ≤ ∅𝑈 

Eq A4. 

Where:  

𝑓(∅) = is the objective function to be minimized (𝑅𝑀𝑆𝐸(𝑘𝑅𝑠)). 

∅ = is the vector of parameters (𝑘𝑅𝑠).  

∅𝐿 and ∅𝑈 are the lower and upper bunds of the parameters, respectively. 

Algorithm steps:  

1) Initialize: start with an initial guess ∅0 within bounds (0.17 as it is the default kRs value).  

2) Compute gradient: calculate ∇𝑓(∅𝑘). 

3) Search direction: determine 𝑃𝑘 using limited-memory approximation of the inverse Hessian. 

4) Line search and update: Find and appropriate step size ∝𝑘 and update ∅𝑘+1. 

5) Projection: Ensure the updated parameters ∅𝑘+1 stay withing bounds by projecting onto the 

feasible region.  

∅𝑘+1 = 𝑃𝑟𝑜𝑗 (∅𝑘 −∝𝑘 𝐻𝑘∇𝑓(∅𝑘)) 

Eq A5. 

Where: 

𝐻𝑘 = is the approximation of the inverse Hessian matrix. 

∝𝑘 = is the step size determined by line search. 

𝑃𝑟𝑜𝑗 = denotes the projection operator ensuring ∅𝑘+1 remains 
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6.2.  Supplementary B. Climate characterization and data QAQC. 

Table 5.S2. Aridity index for GB calculated with data from FAO CLIMWAT 2.0 weather 

data.  

Region 

CLIMWAT 

Weather 

station 

ETp Rainfall AI Classification 
Nearest 

stations 

- - mm mm Index - - 

South 

Buba 1539.4 2133 1.39 

Humid 

Cafine 

Quebil 

Buba 

Malafu 

Enchugal 

Bubaque 

Catio 1641.3 2629 1.60 

Bolama 1691.9 2076 1.23 

Central Bissau 1584.8 1650 1.04 Humid 

North 
Zinguincor 

(Senegal) 
1777.6 1235.1 0.69 

Moist, sub-

humid 

Bissora  

S. Domingos 

Cacheu 

Elalab 

Djobel 
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6.3.  Supplementary C. Goodness of fit indicators and standard deviation for 

predicting ETo in sites. 

Table 5.S3 presents the goodness-of-fit indicators and standard deviations of the data used 

to calibrate the multiple linear regression equations, which were optimized using the L-

BFGS-B numerical method. The table includes metrics for predictions made in both the 

moist sub-humid and humid regions, as well as for scenarios where estimators such as 

Tdew and wind speed (u2) were unavailable, using either average (u2 avg) values or a default 

(u2 def) of 2 m s-1. The equations were calibrated using 70% of the dataset from each 

meteorological station, and the remaining 30% was used to validate the calibrated 

equations. Subsequently, the validated equations were applied to 100% of the dataset for 

the development of this study. 

Table 5.S3. Goodness-of-fit indicators and the standard deviation of ETo estimation when 

using the PMT approach relative to the test and validation of the cluster-

focused multiple linear regression equations for estimating the radiation 

coefficient (kRs) (Eqs. 12-16) and using different predictors for dew point 

temperature (Tdew) and wind speed (u2). 

Climate 

Predictors Goodness of fit indicators and standard deviation 

Tdew kRs 
u2 b0 SD R2 SD 

RMSE 

(mm d-1) 
SD 

NRMSE 

(%) 
SD BIAS SD 

PBIAS 

(%) 
SD 

 Testing (70% data set) 

Moist sub 

humid 
Tmin Optm 

Default 0.98 0.01 0.97 0.01 0.92 0.134 19.1 3.06 0.00 0.04 -0.04 0.85 

Avg 0.98 0.01 0.98 0.01 0.77 0.174 16.0 3.11 0.00 0.04 -0.04 0.79 

Humid 

Tmin Optm 
Default 0.98 0.00 0.97 0.00 0.78 0.053 16.7 1.16 -0.01 0.02 -0.17 0.44 

Avg 0.98 0.01 0.98 0.00 0.67 0.061 14.3 1.50 -0.02 0.06 -0.56 1.33 

Tmean - 2 Optm 
Default 0.97 0.02 0.98 0.00 0.70 0.043 14.9 1.25 -0.05 0.07 -1.17 1.53 

Avg 0.97 0.02 0.98 0.00 0.68 0.051 14.4 1.41 -0.05 0.07 -1.16 1.51 

Tmean-aD 

(aD opt) 
Optm 

Default 0.98 0.01 0.98 0.00 0.67 0.045 14.3 1.19 0.00 0.01 0.09 0.30 

Avg 0.99 0.03 0.98 0.00 0.67 0.049 14.3 1.31 0.04 0.11 0.86 2.20 

 Validation (30% data set) 

Moist sub 

humid 
Tmin Optm 

Default 0.98 0.006 0.97 0.01 0.85 0.117 17.8 2.44 -0.01 0.03 -0.11 0.62 

Avg 0.98 0.014 0.98 0.01 0.72 0.131 15.1 2.40 -0.01 0.05 -0.33 1.10 

Humid 

Tmin Optm 
Default 0.99 0.005 0.97 0.00 0.79 0.057 16.7 1.17 -0.01 0.02 -0.17 0.44 

Avg 0.98 0.018 0.98 0.00 0.67 0.068 14.3 1.50 -0.03 0.06 -0.56 1.33 

Tmean - 2 Optm 
Default 0.98 0.006 0.98 0.00 0.67 0.045 14.3 1.19 0.00 0.01 0.09 0.30 

Avg 0.99 0.026 0.98 0.00 0.67 0.049 14.3 1.31 0.04 0.11 0.86 2.20 

Tmean-aD 

(aD opt) 
Optm 

Default 0.99 0.005 0.97 0.00 0.79 0.057 16.7 1.17 -0.01 0.02 -0.17 0.44 

Avg 0.98 0.018 0.98 0.00 0.67 0.068 14.3 1.50 -0.03 0.06 -0.56 1.33 
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Table 5.S4. Ranges of the goodness-of-fit indicators relative to comparing PM-ETo with 

ETo PMT when using Tmin or the Tmean as predictor of Tdew, when kRs was 

computed with the global Eq. (6), with the climate-focused Eqs (7a, 7b), or the 

cluster-focused Eqs. (12-16) when using the default or the average local u2 

value, for the eleven sites of Guinea-Bissau. 

Climate Predictors Goodness of fit indicators (ranges) 

Tdew kRs u2 
b0 R2 

RMSE 

(mm d-1) 

NRMSE 

(%) 
BIAS 

PBIAS 

(%) 

M
o

is
t 

su
b

 h
u

m
id

 

Tmin Global Default 0.86-0.98 0.95-0.98 0.86-1.19 18.0-23.8 -0.7- -0.03 -13.0- -0.8 

Avg 0.76-0.87 0.95-0.98 0.99-1.26 19.6-27.5 -1.0-0.6 -22.7 - -11.7 

Climate Default 0.83-0.95 0.95-0.98 0.89-1.22 18.6-24.5 -0.8- -0.15 -15.9- -3.35 

Avg 0.73-0.85 0.95-0.98 1.09-1.37 21.7-30.0 -1.2-0.7 -25.6 - -13.7 

Cluster Default 0.96-1.19 0.95-0.98 0.77-1.33 14.7-29.0 -0.07-0.93 -1.32-20.24 

Avg 0.92-1.04 0.96-0.98 0.67-1.08 14.6-21.6 -0.30-0.25 -6.62-5.15 

H
u

m
id

 

Tmin Global Default 0.85-1.00 0.97-0.98 0.80-0.94 16.8-21.5 -0.58-0.04 -13.3-1.2 

Avg 0.76-0.88 0.95-0.98 0.79-1.28 17.3-27.3 -0.9-0.1 -18.9-1.5 

Climate Default 0.88-1.12 0.97-0.98 0.78-1.04 16.3-22.2 -0.41-0.57 -9.4-12.5 

Avg 0.80-1.01 0.95-0.98 0.63-1.09 13.8-23.3 -1.1- -0.6 -23.5 – 11.0 

Cluster Default 0.98-1.14 0.97-0.98 0.74-1.09 15.7-23.8 0.06-0.68 1.5-15.1 

Avg 0.95-1.03 0.97-0.98 0.61-0.77 12.8-16.8 -0.18-0.20 -3.93-4.3 

Tmean - 2 Global Default 0.77-0.88 0.97-0.98 0.81-1.30 17.7-26.9 -1.05- -0.5 -22.5 - - 10.8 

Avg 0.72-0.86 0.95-0.98 0.87-1.44 18.9-30.8 -1.3 - - 0.6 -27.5 - -13.3 

Climate Default 0.81-1.01 0.97-0.98 0.69-1.11 15.1-23.0 -0.8-0.08 -17.7-1.9 

Avg 0.77-1.00 0.95-0.98 0.65-1.22 14.3-26.1 -1.0-0.0 -22.3-0.6 

Cluster Default 0.92-1.03 0.97-0.98 0.66-0.79 13.7-16.9 -0.30-0.22 -5.8-4.7 

Avg 0.92-1.03 0.97-0.98 0.62-0.79 13.0-17.0 -0.2-0.17 -6.4- 3.64 

Tmean-aD 

(aD opt) 

Global Default 0.87-0.99 0.97-0.98 0.63-0.92 13.7-18.4 -0.5-0.02 -10.6-0.49 

Avg 0.75-0.89 0.95-0.98 0.77-1.29 16.7-24.0 -0.9-0.1 -19.2-2.5 

Climate Default 0.92-1.00 0.97-0.98 0.63-0.80 13.2-17.2 -0.3-0.04 -6.0-0.96 

Avg 0.80-1.01 0.95-0.98 0.63-1.10 13.8-23.8 -1.1- -0.5 -24.0 - - 10.4 

Cluster Default 0.97-1.00 0.97-0.98 0.66-0.73 13.7-16.6 -0.01-0.05 -0.01-1.08 

Avg 0.96-1.04 0.97-0.98 0.61-0.74 12.7-16.8 -0.16-0.09 -3.3-5.28 

Default – u2 = 2 m s-1 SD= standard deviation; R2 = coefficient of determination; RMSE = root mean square 

error; NRMSE = normalized root mean square error. 
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Table S5. Accuracy of different PMT approaches analysed at cluster level. ETo PMT estimated when using Tmin or the Tmean as 

predictor of Tdew, ther kRs were computed with the global Eq. (6). or with the climate-focused Eqs (7a, 7b), or the cluster-

focused Eqs. (12-16) when using the default or the average local u2 value for the eleven sites of Guinea-Bissau. 

Cluster 
(AI) 

Predictors Goodness of fit indicators and standard deviation  

Tdew kRs u2 b0 R2 
RMSE 

(mm d-1) 
NRMSE 

(%) 
BIAS 

PBIAS 
(%) 

 

C
lu

st
er

 1
st
 (

h
u

m
id

) 

Tmin 

Global 
Deft 0.92 0.97 0.86 17.91 -0.35 -7.2 

D
ef

 –
 u

2
 =

 2
 m

 s
-1

 S
D

=
 s

ta
n
d

ar
d

 d
ev

ia
ti

o
n

; 
O

p
ti

m
 =

 o
p

ti
m

iz
ed

 w
it

h
 t

h
e 

“
L

-B
F

G
S

-B
”

 a
lg

o
ri

th
m

. 

 

Avg 0.86 0.98 0.97 20.02 -0.63 -13.1 

Climate 
Def 0.96 0.97 0.80 16.64 -0.14 -3.0 
Avg 0.90 0.98 0.84 17.32 -0.42 -8.7 

Optim 
Def 1.04 0.98 0.84 17.41 0.27 5.6 
Avg 0.99 0.98 0.72 14.87 0.01 0.3 

Tmean - 2 

Global 
Def 0.80 0.98 1.14 23.63 -0.88 -18.3 
Avg 0.79 0.98 1.19 24.58 -0.95 -19.6 

Climate 
Deft 0.85 0.98 0.97 20.08 -0.66 -13.62 
Avg 0.84 0.98 1.00 20.71 -0.71 -14.7 

Optim 
Deft 0.94 0.98 0.73 15.21 -0.20 -4.2 
Avg 0.94 0.98 0.73 15.18 -0.23 -4.8 

Tmean-aD 

(at optim) 

Global 
Deft 0.91 0.98 0.80 16.55 -0.35 -7.4 
Avg 0.85 0.98 0.95 19.59 -0.62 -12.9 

Climate 
Deft 0.95 0.98 0.72 14.90 -0.15 -3.0 
Avg 0.78 0.98 1.23 25.53 -0.98 -20.4 

Optim 
Deft 0.99 0.98 0.70 14.49 0.02 0.5 
Avg 0.99 0.98 0.68 14.18 0.02 0.5 

C
lu

st
er

 2
n

d
 (

h
u

m
id

+
m

o
is

t)
 Tmin 

Global 
Deft 0.94 0.97 0.88 18.41 -0.23 -4.9 
Avg 0.80 0.98 1.12 23.47 -0.89 -18.6 

Climate 
Deft 0.99 0.97 0.84 17.78 0.01 0.12 
Avg 0.85 0.98 0.93 19.61 -0.67 -14.1 

Optim 
Deft 1.12 0.97 1.06 22.22 0.61 12.9 
Avg 0.99 0.98 0.65 13.73 0.03 0.6 

Tmin (moist) 
& Tmean – 2 

(humid) 

Global 
Deft 0.79 0.98 1.17 24.57 -0.94 -19.7 
Avg 0.76 0.98 1.30 27.26 -1.11 -23.4 

Climate 
Deft 0.85 0.98 0.95 20.04 -0.65 -13.8 
Avg 0.82 0.98 1.04 21.99 -0.82 -17.3 

Optim 
Deft 0.99 0.98 0.71 14.95 0.03 0.5 
Avg 0.97 0.98 0.67 14.11 -0.07 -1.5 

Tmin (moist) 
& Tmean – aD 

(humid) 

Global 
Deft 0.90 0.98 0.79 16.58 -0.39 -8.3 
Avg 0.79 0.98 1.13 23.75 -0.92 -19.3 

Climate 
Deft 0.86 0.96 1.07 22.30 -0.52 -10.8 
Avg 0.80 0.96 1.27 26.35 -0.87 -18.1 

Optim 
Deft 1.00 0.98 0.71 14.94 0.04 0.9 
Avg 1.00 0.98 0.64 13.56 0.05 1.0 

C
lu

st
er

 3
rd

 
(m

o
is

t)
 

Tmin 

Global 
Deft 0.88 0.96 1.13 22.29 -0.53 -10.5 
Avg 0.86 0.96 1.15 22.65 -0.60 -11.8 

Climate 
Def 0.88 0.95 1.17 23.40 -0.51 -10.3 
Avg 0.84 0.96 1.22 24.46 -0.70 -14.1 

Optim 
Def 0.99 0.96 1.01 19.91 0.05 1.0 
Avg 0.98 0.96 0.99 19.49 -0.01 -0.2 

B
is

so
ra

 
(m

o
is

t)
 

Tmin 

Global 
Deft 0.98 0.96 0.94 20.42 -0.04 -0.8 
Avg 0.76 0.98 1.26 27.47 -1.04 -22.7 

Climate 
Def 0.95 0.96 0.95 20.71 -0.15 -3.4 
Avg 0.73 0.98 1.37 29.97 -1.17 -25.6 

Optim 
Def 1.19 0.97 1.33 28.99 0.93 20.2 
Avg 0.99 0.98 0.67 14.67 0.02 0.4 

B
u

b
a

q
u

e 
(h

u
m

id
) 

Tmin 

Global 
Deft 0.85 0.97 0.95 21.50 -0.58 -13.3 
Avg 0.79 0.97 1.11 25.29 -0.82 -18.7 

Climate 
Def 0.88 0.97 0.85 19.28 -0.41 -9.4 
Avg 0.83 0.97 0.98 22.22 -0.64 -14.5 

Optim 
Def 0.99 0.97 0.74 16.79 0.07 1.5 
Avg 0.95 0.97 0.74 16.79 -0.12 -2.6 

Tmean - 2 

Global 
Def 0.79 0.97 1.13 25.56 -0.83 -18.9 
Avg 0.78 0.97 1.17 26.54 -0.89 -20.2 

Climate 
Deft 0.83 0.97 0.99 22.58 -0.66 -14.9 
Avg 0.82 0.97 1.02 23.22 -0.70 -15.8 

Optim 
Deft 0.94 0.97 0.75 16.98 -0.16 -3.6 
Avg 0.94 0.97 0.75 17.03 -0.15 -3.5 

Tmean-aD 

(aD optim) 

Global 
Deft 0.90 0.97 0.81 18.45 -0.29 -6.6 
Avg 0.81 0.97 1.06 23.98 -0.73 -16.6 

Climate 
Deft 0.94 0.97 0.76 17.27 -0.13 -2.9 
Avg 0.85 0.97 0.93 21.21 -0.55 -12.5 

Optim 
Deft 0.97 0.97 0.73 16.60 0.00 0.0 
Avg 0.96 0.97 0.74 16.81 -0.05 -1.1 
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6.4. Supplementary D. Correlation between ETo estimated with weather 

observations and with AgeERA5 and MERRA-2 reanalysis data.  

Table 5.S6. Goodness-of-fit indicators relative to the estimation of ETo when using 

AgERA5 and MERRA-2 reanalysis data compared to observed ground 

measurements.  

 

Bias correction 

methods 

PBias 

(%) 
SD Bias SD R2 SD 

RMSE 

(mm d-1) 
SD 

NRMSE  

(%) 
SD 

AgERA5 

u2 avg 

UNc 5.17 7.22 0.2 0.34 0.96 0.01 1.12 0.17 23.6 3.9 

ALMc 0.00 0.00 0.0 0.00 0.90 0.03 1.63 0.27 34.0 5.7 

BIASc 0.00 0.00 0.0 0.00 0.95 0.01 1.05 0.11 22.0 2.3 

RLMc 2.41 0.82 0.1 0.04 0.96 0.01 1.04 0.09 21.7 1.6 

Sc 2.59 0.88 0.1 0.05 0.96 0.01 1.04 0.09 21.7 1.7 

 u2 = 2 m s-1 

UNc 4.54 7.98 0.2 0.37 0.96 0.01 1.07 0.17 22.4 3.9 

ALMc 0.00 0.00 0.0 0.00 0.92 0.02 1.48 0.20 31.0 4.3 

BIASc 0.00 0.00 0.0 0.00 0.96 0.01 0.99 0.10 20.7 2.0 

RLMc 2.39 0.78 0.1 0.04 0.96 0.01 0.97 0.08 20.3 1.4 

Sc 2.66 0.81 0.1 0.04 0.96 0.01 0.98 0.09 20.4 1.5 

 MERRA-2 

 u2 avg 

UNc -24.27 6.88 -1.18 0.39 0.94 0.00 1.57 0.33 32.51 5.44 

ALMc 0.00 0.00 0.00 0.00 0.93 0.02 1.38 0.22 28.71 3.94 

BIASc 0.00 0.00 0.00 0.00 0.96 0.00 1.01 0.06 21.11 0.86 

RLMc 0.01 1.37 0.00 0.07 0.94 0.00 1.21 0.06 25.14 0.97 

Sc 0.79 1.09 0.04 0.06 0.94 0.00 1.21 0.05 25.32 0.95 

 u2 = 2 m s-1 

UNc -18.63 9.61 -0.91 0.51 0.94 0.01 1.44 0.35 29.88 5.95 

ALMc 0.00 0.00 0.00 0.00 0.93 0.01 1.39 0.15 28.93 2.39 

BIASc 0.00 0.00 0.00 0.00 0.96 0.01 1.05 0.06 21.95 1.54 

RLMc -0.30 1.26 -0.01 0.06 0.94 0.01 1.18 0.05 24.67 1.11 

Sc 0.93 0.78 0.05 0.04 0.94 0.01 1.20 0.05 24.94 1.17 

SD= standard deviation; UNc – raw data or uncorrected bias; bias correction methods: Sc- Slope, RLMc – Robust linear 

model; Biasc - Bias; ALMc – Adjusted linear model 
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Figure 5.S7. Comparing ETo estimated with observed weather data and with AgERA5 

after bias correction for the eleven sites in Guinea-Bissau. 
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6.5. Supplementary E. Spatial distribution of annual ETo in GB.  

Table 5.S8. Geostatistical parameters used to calculate the interpolation annual ETo  with 

AgERA5 in GB. 

 

Metric Annual ETo Units 

GS+ metrics 

Variogram Model Exponential - 

Nugget 10  mm y-1 

Sill 17870 m 

Range 240300 m 

Autocorrelation metrics 

Global Moran's I 0.84 index 

Variance 0.001677 mm y-1 

Z - score 20.714055 mm y-1 

p-value* < 000.1 index 

Goodness-of-fit indicators 

RMSE 40.5 mm y-1 

NRMSE 2.3 % 

BIAS 0.14 - 

PBIAS 0.008 % 

R2 0.87 - 

ρ 0.94 - 

ρ = Pearson correlation  
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1. Abstract 

Mangrove swamp rice production (MSRP) is of fundamental importance for the 

livelihoods, food security, and nutritional well-being of coastal populations in West 

Africa. However, this system faces increasing challenges due to its reliance on sufficient 

and well-distributed rainfall to maintain feasible soil salinity levels for rice production 

during the growing season. This study examines the dynamics of soil water and salts using 

field observations collected from four different MSRP fields in Guinea-Bissau during two 

growing seasons, along with simulations using the HYDRUS-1D model. Several rainfall 

and groundwater depth scenarios were also considered to identify the key factors 

contributing to soil salinity at the study sites. The results helped identify the main factors 

influencing soil salinity during the study period and estimate the potential impacts on crop 

yields, which could decline by up to 60%. Key factors influencing soil salinity included 

the amount and distribution of seasonal rainfall, groundwater depth, and groundwater 

quality. The analysis of modeled scenarios also provided insights into effective 

management strategies for coping with soil salinization, particularly by assessing: a) 

where and when more productive, long-cycle rice varieties can still be cultivated; b) 

where salt-tolerant rice varieties have to be chosen. Additionally, the results reinforce the 

need for the regular maintenance of dikes and other drainage structures to avoid brackish 

water entrance and guaranty minimum rice growth conditions. Future research will 

explore adopting this practice in field with modern water management, with the model 

enabling precise analysis of impact on sustainability. 
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2.  Introduction 

Mangrove swamp rice production (MSRP) refers to rice cultivation on former mangrove 

soils that have been anthropogenically modified for agricultural use. This practice 

typically occurs near saltwater rivers in areas previously covered by mangrove forests, 

which have been transformed into rice paddies through deforestation, dike and bunds 

construction, plots creation, and soil desalination (Baggie et al., 2018; Balasubramanian 

et al., 2007; Garbanzo et al., 2024a). In West Africa, the MSRP region extends from 

Senegal to Sierra Leone and plays a vital role in ensuring food security. In Guinea-Bissau, 

MSRP areas represent approximately 49% of the country's crop production (The Republic 

of Guinea-Bissau, 2018), forming the basis of the population’s diet. 

While the MSRP system is not particularly conservation-friendly for mangrove forests, it 

remains the only viable option for local communities in these African regions to sustain 

food production, given the higher fertility of mangrove soils compared to upland areas 

(Jnr, 2014). However, MSRP faces significant challenges, primarily due to its reliance on 

rainfall (2,500-1,500 mm) to leach salt from the rootzone, ensuring suitable conditions 

for rice growth. As variability in rainfall patterns driven by climate change makes the 

desalination of paddy fields increasingly difficult, rice production is negatively impacted 

(Mendes and Fragoso, 2023; Temudo et al., 2022). Irrigation is not feasible because 

freshwater resources are either unavailable or farmers lack the financial means to access 

necessary technologies (Martiarena and Temudo, 2023; Temudo and Cabral, 2023). 

Additionally, paddy fields are influenced by tidal movements that affect groundwater 

dynamics, saline water intrusion, and soil salinity buildup as salts are drawn up to the soil 

surface layer due to strong evaporation rates during the dry season (Garbanzo et al., 

2024a). These challenges characterize MSRP as a highly complex system, and 



223 

 

understanding its dynamics is crucial for ensuring the sustainability of this production 

system. 

Although soil salinization in MSRP areas exhibits significant spatial variability (Sylla et 

al., 1995), the landscape can be categorized into two distinct zones: tidal mangrove fields 

(TM) and associated mangrove fields (AM) (Baggie et al., 2018; Garbanzo et al., 2024a). 

TM are the ones closer to the main dike, were previously covered by mangroves forest, 

and tend to experience higher levels of salinization. In contrast, AM are situated further 

inland, in areas that were once mangrove-covered and have been cultivated for decades 

or even centuries or are located near the first main dike prior to agricultural expansion 

driven by population growth; they have lower salinization levels primarily influenced by 

brackish groundwater during the dry season. Soil salinization management in MSRP areas 

remains largely empirical, based on local knowledge and practices, many of which are 

not well-suited to the changing socio-environmental conditions (Martiarena and Temudo, 

2023).  

MSRP in Guinea-Bissau is also not supported with fertilizers input. As a result, and given 

that rice is sensitive to salinity stress (Ayers and Westcot, 1985; Minhas et al., 2020), 

yields are generally low. According to the USDA (2024), average yields in Guinea-Bissau 

(2019-2024) were only about 1.7 tonnes ha-1, compared to 3.6 tonnes ha-1 in neighboring 

Senegal. For traditional rice-producing countries like India (4.2 tonnes ha-1), Bangladesh 

(4.6 tonnes ha-1), Vietnam (6.0 tonnes ha-1), Spain (6.5 tonnes ha-1), and China (7.1 tonnes 

ha-1), the differences are even more pronounced (FAO, 2023). Nonetheless, the yields 

from MSRP are much higher than those obtained through other rice cropping systems 

practiced in the country: upland slash-and-burn and freshwater inland swamp cultivation 

(Garbanzo et al., 2024a). Traditionally, in this low-external inputs system, soil fertility 

and the control of toxicity, particularly during dry season when aerobic conditions prevail, 
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were achieved through the regular entrance of brackish water. This practice also improved 

weeds’ control and reduced the labor input by eliminating the need for ploughing, which 

is a great advantage in times of increased youth migration and engagement in education 

(Cossa, 2023). Although this practice has been almost abandoned due to increasingly 

irregular rainfall patterns, some development projects have reintroduced it through the 

installation of modern water management infrastructures using PVC drainage tubes (see 

https://universsel.org/). With an improved understanding of soil water-salt dynamics, 

these innovations may facilitate the reimplementation of traditional brackish water 

management practices. 

Therefore, more effective soil, water, and crop management practices are crucial for 

improving both the rice yields and the livelihoods of local communities in a context of 

drastic socio-environmental transformations. Numerical Modeling, using tools such as 

the HYDRUS software package (Šimůnek et al., 2024, 2016), SWAP (Heinen et al., 2024, 

2020), RZWQM (Ma et al., 2001), SALTMED (Ragab, 2002), and WAVES (Yu et al., 

2021), can offer a better understanding of soil water-salt dynamics in complex systems 

and valuable solutions for coping with soil salinity. These modeling tools can incorporate 

site-specific soil, water, and crop parameters, while accounting for time-varying field 

conditions, including soil salinity levels, groundwater dynamics, and rainfall patterns. By 

doing so, they can provide insights on the impacts of these factors on crop yields, with 

minimal effort and resources, aiding in the development of improved management 

guidelines for rice production in salt-affected areas. 

Examples of applications of numerical modeling tools for saline water management have 

been extensively reported in the literature, including studies on interactions with shallow 

saline groundwater systems (Karimov et al., 2014; Xu et al., 2013), evaluation of soil 

salinity control measures (Guo et al., 2024; Ramos et al., 2023), the impacts of irrigation 
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water quality on crop growth (Kanzari et al., 2024; Phogat et al., 2018; Stulina et al., 

2005), and disentangling the relationships with nutrient management (Phogat et al., 2018; 

Ramos et al., 2023). Most of these studies have focused on addressing complex soil 

salinization issues in arid to semi-arid regions, which are among the most severely 

affected by human-induced salinization (Hopmans et al., 2021). However, findings from 

these regions cannot be directly extrapolated to MSRP areas. Although MSRP systems 

exhibit comparable complexities in salinization processes, their presence in humid 

climates significantly alters salt dynamics and salinity build-up. In humid climates, higher 

rainfall and frequent leaching events reduce the accumulation of salts compared to arid 

or semi-arid conditions. However, in MSRP systems, the interaction between tidal 

inflows, poor drainage, and alternating wet-dry conditions creates a unique salinity 

dynamic. These factors influence the timing and extent of salt accumulation differently 

than in drier regions, making it necessary to treat them as distinct systems in terms of 

salinity modeling and management. This distinct climatic context demands tailored 

research and a deeper understanding of these unique conditions to develop effective 

management strategies. To date, this remains a critical knowledge gap in existing research 

on soil salinity in MSRP areas; a gap that this study aims to address. 

The specific objectives of this study are therefore: (i) to calibrate and validate the 

HYDRUS-1D model for simulating soil-water dynamics and salt transport in the tidal and 

associated mangrove fields in Guinea-Bissau; (ii) to compute the soil-water balance and 

evaluate the impact of soil-water management on rice yields at each study site; and (iii) 

to assess the effects of changing groundwater dynamics and rainfall conditions on rice 

yields. The findings of this study are instrumental in enhancing rice production in Guinea-

Bissau but also in other MSRP regions across West Africa. 
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3.  Material and methods. 

3.1.  Study area 

This study was conducted in three paddy rice field of three villages of Guinea-Bissau. 

Elalab (12°14'48.5"N, 16°26'30.3"W), Djobel (12°16'51.3"N, 16°23'34.4"W), and Cafine 

(11°12'40.4"N, 15°10'26.7" W) (Fig. 6.1). In Cafine, both tidal and associated areas were 

studied, whereas only associated areas were considered in Elalab and Djobel due to the 

smaller field dimensions and the need to ensure the security of dataloggers and sensors. 

According to the Köppen climate classification, the region's climate is classified as 

tropical monsoon (Aw), characterized by heavy rainfall during the wet season (Beck et 

al., 2018). Rainfall typically begins in June in the southern regions of Guinea-Bissau 

(Cafine, Djobel) and in July in the northern regions (Elalab), ending by late September or 

October (Fig. 6.1). Average annual rainfall ranges from approximately 1,500 mm in the 

north to 2,500 mm in the south. Moreover, average annual temperatures are between 24 

°C and 27 °C, with minimal variation throughout the year (Garbanzo et al., 2024b). 

The soils exhibit hypersaline conditions, with salinity increasing in the deeper horizons. 

They are classified as Inceptisols with Vertic features, characterized by limited 

pedogenetic development (D’Amico et al., 2024; Teixeira, 1962). Generally, tidal 

mangrove soils have rich clay content, whereas associated mangrove soils are 

predominantly sandy (Garbanzo et al., 2025). Soil profiles tend to be deeper in the 

southern regions compared to the northern areas. The soils also present ustic moisture 

regimes, remaining dry for more than 90 consecutive days. Additionally, MSR soils have 

undergone physical and chemical modifications induced by local farmers’ interventions, 

having originally been mangrove forests converted for rainwater harvesting and 

prevention of tidal water intrusion during rice cultivation. Table 6.1 shows the main 
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physical and chemical properties of the soils in the study areas. The methodologies used 

for soil characterization can be found in Merkohasanaj et al. (2025). 

 

 
Fig. 6.1. Locations of the study sites in Guinea-Bissau, West Africa. 
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Table 6.1. Soil physical properties of mangrove swamp rice fields in Guinea-Bissau. 

Location 
Depth 

[m] 

Sand [%] 

(2.0-0.05 

mm) 

Silt [%] 

(0.05-

0.002 

mm) 

Clay [%] 

(<0.002 

mm) 

ρb 

[g cm-3] 

OC 

[%] 

θFC 

[cm3 cm-3] 

θWP 

[cm3 cm-3] 

ECe 

[dS m-1] 

Cafine 

TM  

0.0 – 0.39 19 39 42 1.09 1.37 0.327 0.214 17.4 

0.39 – 0.63 36 24 40 1.16 1.08 0.254 0.210 28.5 

0.63 – 0.85 48 28 24 0.87 1.53 0.428 0.315 118.3 

Cafine  

AM 

0.0 – 0.30 17 38 45 1.17 1.04 0.371 0.190 16.0 

0.30 – 0.48 12 31 57 1.15 0.58 0.454 0.301 12.3 

0.48 – 0.74 31 32 37 0.98 0.70 0.476 0.215 22.6 

0.74 – 1.18 40 35 25 0.62 0.91 0.574 0.272 105.7 

Djobel 

 AM 

0.0 – 0.25 19 50 31 1.20 0.29 0.127 0.088 24.2 

0.25 – 0.50 23 55 22 1.40 0.37 0.175 0.098 13.9 

0.50 – 0.75 15 49 36 1.55 0.27 0.122 0.091 16.4 

Elalab 

AM 

0.0 – 0.13 68 13 19 1.53 0.75 0.211 0.100 35.1 

0.13 – 0.40 44 21 35 1.65 0.47 0.341 0.131 34.4 

0.40 – 0.53 94 2 4 1.52 0.09 0.136 0.063 21.1 

0.55 – 0.70 84 7 9 1.51 0.08 0.094 0.062 54.2 

TM, tidal mangrove; AM, Associated mangrove; OC, Organic carbon; ρb, bulk density; θFC, volumetric water content at field capacity. θWP, volumetric water content at wilting 

point, ECe, electrical conductivity of the saturation paste extract. 
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Data collection 

The paddies were continuously monitored between 2022 and 2023 to study the dynamics 

of water and salts. Teros 12 sensors (Meter Group, USA) were used to measure soil water 

contents (SWC) and bulk electrical conductivity (ECb). The relationships between ECb 

data, the electrical conductivity of the saturation paste extract (ECe), and the electrical 

conductivity of the soil solution (ECsw) were as follows (Hilhorst, 2000): 

 𝐸𝐶𝑒 =
80  𝜃 𝐸𝐶𝑏

𝜃𝑠(𝜀𝑏−4.1)
 (1) 

 𝐸𝐶𝑠𝑤 =
 𝜀𝑤 𝐸𝐶𝑏

𝜀𝑏
 (2) 

 𝜀𝑤 = 80.3 − 0.37(𝑇𝑠𝑜𝑖𝑙 − 20) (3) 

 𝐸𝐶𝑒 = 𝐸𝐶𝑠𝑤
𝜃

𝜃𝑠
 (4) 

where 𝜃 is the volumetric soil water content [L3 L-3], 𝜃𝑠 is the saturation water content 

[L3 L-3], εb is the dielectric permittivity of the bulk soil [dS m-1], εw is the dielectric 

permittivity of the soil pore water [dS m-1], and Tsoil is the soil temperature (ºC). The 

sensors were installed at soil depths of 0.07, 0.15, 0.25 and 0.35 m, positioned at the 

center of the rice cultivation plots at each of the four sites. Each sensors took measurement 

every 20 minutes. The reliability of sensors measurements (16 unit) was assessed in the 

laboratory before installation and subsequently in the field after deployment (Figure. 6.S1 

of the supplementary material). For this purpose, soil cores (100 cm3) were periodically 

collected (soil depths of 0.0 – 0.10, 0.10-0.20 m) for measuring volumetric soil water 

contents (SWC). At the same time, disturbed soil samples were collected to determine 

soil salinity, which was assessed by measuring the electrical conductivity of a 1:5 soil-to-

water extract (EC1:5) and converting it to the ECe (Sonmez et al., 2008) considering the 

texture (fine, medium fine) of soil horizons where sensors were installed, as follows: 
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 𝐸𝐶𝑒 = 7.36 𝐸𝐶1:5 + 0.24 (6.5) 

In addition, Hydros 21 groundwater level sensors (Meter Group, USA) were installed at 

a depth of 2.0 m to monitor groundwater depth (GWD) next to the sensor Teros 12. In 

Cafine, GWD ranged from 0 to 1.89 m in tidal areas and 0 to 1.77 m in associated areas, 

with electrical conductivity (ECgw) averaging 48.3 dS m-1 in tidal areas and 47.2 dS m-1 

in associated areas. In Djobel, GWD ranged from 0 to 1.78 m and ECgw averaged 17.7 dS 

m-1. In Elalab, GWD ranged from 0 to 1.35 m, with an average ECgw of 54.1 dS m-1. 

Meteorological data including air temperature, relative humidity (RH), rainfall, solar 

radiation, and wind speed (u2) were collected daily using Atmos 41 sensors (Meter Group, 

USA). The years 2022 and 2023 were characterized by high rainfall in Elalab and Djobel, 

while both years represented normal rainfall conditions in Cafine (Figure. 6.2). 
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Figure. 6.2. Daily rainfall measurements and computed FAO-56 Penman Monteith 

reference evapotranspiration (ETo) at the study sites. 

 

The rice varieties Yakassau and Caublack were cultivated in Cafine, Edjur in 

Djobel, while in Elalab Yakai Tomor was used, as these were the varieties used by farmers 

in the fields where the sensors were installed. Table 6.2 outlines the crop growth stages 

for each variety, location, and growing season. Typically, the rice-growing season in the 

study areas extended from early August to late November, with the southern region 

having a longer growing period due to higher rainfall compared to the northern region. 

Rice transplanting generally began around the first week of September, with priority 

given to areas with fresher and more abundant clean water. However, the timing of 
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transplanting varied as farmers relied on traditional methods, such as salinity taste-testing, 

while also considering labor availability and optimization of waterlogging levels before 

planting. The most critical stages for rice growth occurred shortly after transplanting in 

early September and during the flowering and grain filling. The latter occurred in late 

October in the northern regions and mid-November in the southern areas, coinciding with 

the final period of the rainy season. This period is particularly important for key 

phenological stages such as flowering and grain filling, when the crop is most vulnerable 

to environmental stress, making it crucial to maintain minimal soil salinity levels during 

these times (Figure. 6.3). Lastly, during the late-season period the grains enter a drying 

phase, with harvest timings varying across villages, among varieties and availability of 

labor groups. 

Table 6.2. Dates of the crop growth stages measured, and yield obtained at each site for 

the 2022 and 2023 seasons. 

Site & 

Ecology 

Rice 

variety 
Year 

Crop growth stages Yield 

Initial Crop development Mid-season Late-season 
Average 

(kg ha-1) 

Cafine  

TM 

Yakasau 

2022 28/09-09/10 10/10-16/11 17/11-02/12 03/12-15/12 1807 

(± 21%) 2023 04/10-15/10 16/10-20/11 21/11-11/12 12/12-17/12 

Cafine 

 AM 

Caublack 

2022 28/09-06/10 07/10-03/11 04/11-21/11 22/11-27/11 1750 

(± 11%) 2023 20/09-01/10 02/10-06/11 07/11-27/11 28/11-07/12 

Djobel  

AM 

Edjur 

2022 20/09-01/10 02/10-30/10 31/10-16/11 17/11-22/11 2073 

(± 8.2%) 2023 05/09-16/09 17/09-22/10 23/10-13/11 14/11-20/11 

Elalab  

AM 

Tomor 

2022 23/09-04/10 05/10-26/10 27/10-26/11 27/11-09/12 1703 

(± 20%) 2023 15/09-26/09 27/09-31/10 01/11-30/11 01/12-12/12 

TM, tidal mangrove; AM, Associated mangrove. 
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*Doy =days of the year. 

Figure. 6.3. The phenological stages of rice observed in the study sites during the 2022 

and 2023 seasons.  

3.2.  Modeling approach 

3.2.1.  Model description  

The HYDRUS-1D model (Šimůnek et al., 2016, 2024) was used to numerically simulate 

one-dimensional water flow and solute transport in variably-saturated porous media by 

solving the Richards and the Fickian-based convention-dispersion equation (CDE), 

respectively. The soil hydraulic properties were described by the Mualem-van Genuchten 

functional relationships (Mualem, 1976; van Genuchten, 1980), as follows: 

 𝑆𝑒(ℎ) =
𝜃(ℎ)−𝜃𝑟

𝜃𝑠−𝜃𝑟
=

1

(1+|𝛼ℎ|𝜂)𝑚 (6.6) 

 𝐾(ℎ) = 𝐾𝑠𝑆𝑒
ℓ [1 − (1 − 𝑆𝑒

1 𝑚⁄
)

𝑚
]

 2

 (6.7) 

where Se is the effective saturation [-], h is the soil pressure head [cm], θr and θs 

represent the residual and saturated soil water contents [L3 L-3], respectively, α [L-1] and 
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η [-] are empirical shape parameters, Ks is the saturated hydraulic conductivity [L T-1], l 

is a parameter related to the pore connectivity/tortuosity [-], and m=1-1/η. 

The sink term in the water flow equation is the root water uptake (RWU) and was 

formulated based on the macroscopic approach proposed by Feddes et al. (1978). In this 

approach, potential root water uptake (PRWU), which corresponds to potential crop 

transpiration (Tc, L T-1), is distributed across the root zone. PRWU may be reduced by 

the presence of stress factors, such as water availability and salt content, thereby defining 

the actual water uptake rate by the roots, or the actual transpiration rate (Tc act, L T-1). In 

the model proposed by Feddes et al. (1978), water uptake by the roots occurs at the 

potential rate when the soil pressure head h is between h2 and h3, decreases linearly when 

h > h2 and h < h3, and becomes zero when h > h1 and h < h4 (subscripts 1 to 4 represent 

different pressure thresholds). On the other hand, root water uptake reductions due to 

salinity stress are described with the threshold and slope function proposed by Maas 

(1990). According to this function, water uptake is at its maximum when the ECe is below 

the crop’s salinity tolerance threshold (ECe threshold, dS m-1). Above this threshold, 

water uptake decreases linearly with increasing salinity, at a rate determined by a specific 

slope (s, % per dS m−1). Both reduction functions were combined under the assumption 

that the effects of water and salinity stress are multiplicative (van Genuchten, 1997). Soil 

salinity was represented by the ECsw, which was simulated in the CDE model as a non-

reactive tracer. The model assumes a conversion factor of ECsw / ECe = 2. 

For each site, the crop water-yield linear function proposed by Doorenbos and 

Kassam, (1979) was further applied to evaluate the impact of soil water and salinity 

stresses on crop yields, as follows: 

 (1 −
𝑌𝑎

𝑌𝑚
) = 𝐾𝑦 (1 −

𝐸𝑇𝑐 𝑎𝑐𝑡

𝐸𝑇𝑐
) (8) 
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where Ya and Ym are the actual and maximum crop yields [tonnes ha-1], respectively; ETc 

act and ETc are the actual and potential seasonal crop evapotranspiration [mm], 

respectively; and Ky is the yield response factor describing the reduction in relative yield 

due to the relative reduction in ET caused by soil water and salinity stresses. 

3.2.2. Model setup, calibration, and validation 

The soil water contents and fluxes and salt transport in the four case studies during 

the 2022 and 2023 growing seasons were modelled with HYDRUS-1D. For each season, 

simulations run from May 15th (day 1) to December 31th (day 231). At each location, the 

soil domain was modelled as a 1D column with a depth of 2.0 m, discretized into 101 

nodes. Initial conditions were set by the SWC and ECsw measurements at different depths 

the start of the rice-growing season. 

The upper boundary conditions were defined by soil evaporation (Es), and rainfall 

(rice fields are not irrigated), while the bottom boundary condition was set as the 

measured GWD. Daily weather data were used to calculate the reference 

evapotranspiration (ETo, mm) using the FAO56 Penman-Monteith equation (Allen et al., 

1998). The crop evapotranspiration (ETc) was then computed using the crop coefficients 

(Kc) proposed by Pereira et al., (2021) for rice (flooded - anticipated cut-off), with values 

of 1.05 for the initial stage, 1.20 for the mid-season stage, and 0.80 for the end-season 

stage. A dual Kc approach (Kc = Kcb + Ke) was used for ETc partitioning, with the Tc 

component calculated using the basal crop coefficient (Kcb) for each growth stage, as 

proposed by Pereira et al. (2021), and the Es component, computed as Es = ETc – Tc. The 

Kcb values for the initial, mid-season, and end-season stages were 0.15, 1.15, and 0.70, 

respectively. The Kc and Kcb values were corrected for local climate conditions of relative 
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humidity and wind velocity (RH and u2) and crop height following the FAO56 procedure 

(Allen et al., 1998). 

For root water uptake, Tc reductions due to water stress were calculated using the 

parameters h1= 100 cm, h2= 55 cm, h3=−160 to −250 cm, and h4=−15000 cm (Li et al., 

2014). Tc reductions due to salt stress considered a ECe threshold of 3.0 dS m-1, and a s 

rate value of 12% per dS m-1 (Minhas et al., 2020), with these parameters applied 

throughout the entire crop season. For assessment of yield impacts, the Ky value was set 

to 1.25 (Monteiro et al., 2013), also for the entire crop season. The root depth was 

determined to vary between 0.3 and 0.5 m, depending on the location, as measured in the 

field.  

The calibration process involved adjusting the simulated SWC and ECsw values to 

the correspondent daily observations at different depths (0.07, 0.15, 0.25 and 0.35 m) 

using the numerical inversion procedure proposed by Šimůnek and van Genuchten 

(1996). The calibration parameters were the soil hydraulic parameters (θr, θs, α, η, Ks) 

and soil dispersivity (λ). Weighting coefficients for the different data points in the 

objective function were assumed to be 1 (González et al., 2015). The parameter l was set 

to 0.5 (Mualem, 1976). Calibration was carried out sequentially for each layer, iterating 

through all four layers and restarting the process until the deviations between the 

measured and simulated data were minimized and stabilized. Ultimately, to improve 

model fitting, the Ks and λ parameters underwent additional manual tunning. For each 

location, the 2023 experimental dataset was used for model calibration, while model 

validation was conducted using the calibrated parameters and the 2022 datasets. 
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The goodness-of-fit indicators used to evaluate the accuracy of model simulations 

were: The coefficient of determination (R2), that measures the proportion of variance 

explained by the model, with values close to 1 indicating a high degree of linear fit 

(Taylor, 1990). The mean absolute error (MAE) and the root mean square error (RMSE) 

that quantify the average deviation between the measured and model-predicted values 

(Plevris et al., 2022). MAE provides a direct measure of error, while RMSE penalizes 

larger errors more heavily, providing sensitivity to the model’s performance (Hodson, 

2022; Steurer et al., 2021). Moreover, the normalized RMSE (NRMSE) was calculated 

to compare the relative error to the mean of the observation. Additionally, the BIAS was 

evaluated, serving as an indicator to both the direction and magnitude of systematic error. 

Similarly, the percentage Bias (PBIAS) was computed, to estimate the predictions’ 

tendency (Montgomery and Runger, 2011). A negative PBIAS value reflects an 

underestimation, while positive values indicate overestimation of predicted data (Huber 

and Ronchetti, 2009). The goodness-of-fit indicators were calculated as follows: 
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𝑅2 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖 − 𝑂̅)2𝑛
𝑖=1

 (9) 

𝑀𝐴𝐸 =
1

𝑛
∑(𝑂𝑖 − 𝑃𝑖)

𝑛

𝑖=1

   (10) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑂𝑖 − 𝑃𝑖)2

𝑛

𝑖=1

   (11) 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑂̅
∙ 100 (12) 

𝐵𝐼𝐴𝑆 =
1

𝑛
∑(𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

 (13) 

   𝑃𝐵𝐼𝐴𝑆 = 100 ∙
∑ (𝑃𝑖 − 𝑂𝑖)

𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=0

 (14) 

where 𝑂𝑖 and 𝑃𝑖 represent the observed and the model-predicted values, respectively, 𝑂̅ 

is the mean of the observations.  

Metrics were computed using R software version 2024.04.1 (R Core Team, 2024). 

For soil salinity, the ECe served as reference for computing the goodness-of-fit indicators 

and analysis of results. 

3.3.  Modeling scenarios 

For each study site, two GWD and three rainfall scenarios were considered, in order 

to evaluate their impacts on soil salinity and rice growth. The scenario analysis focused 

on the following aspects: 

✓ ECe levels throughout the simulation, with particular attention to the growing 

season. 

✓ The number of days in the year when ECe remained below the ECe threshold. 

✓ Impacts of soil salinity on crop transpiration (1 - Tc act / Tc) and crop yields (1 - Ya 

/ Ym). 
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✓ The window of opportunity for growing rice, defined as the salt-free period (Guei 

et al., 1997). 

✓ Identification of sites where cultivation is feasible only with salt-tolerant rice 

varieties. 

The first GWD scenario reflected field conditions observed from sensor measurements in 

2023. According to the site, initial GWDs ranged from 1.35 to 1.89 m. As the soil became 

saturated, these depths gradually became shallower, and a water layer was formed at the 

soil surface. The second GWD scenario simulated a shallower GWD, representing 

conditions typically associated with dike breaches or saltwater infiltration, often caused 

by inadequate maintenance or significant tidal events. In this case, the initial GWD was 

set at 0.5 m and progressively rose to the soil surface with the onset of the rainy season. 

The three rainfall scenarios were based on historical daily rainfall data from the AgERA5 

dataset, provided by the European Center for Medium-Range Weather Forecasts 

(ECMWF) platform, part of the Copernicus project (Boogaard et al., 2020). Rainfall data 

from 1979 to 2023 were analyzed, focusing on the centroid (pixel) closest to the 

meteorological station used in this study. Calibration was performed by comparing 

rainfall data from 2021 to 2023 using several correction schemes, including simple bias 

correction, slope correction, and linear scaling correction (Teutschbein and Seibert, 

2012). The linear scaling correction proved to be the most effective, with a 90-day 

correction period (Figure. 6.S2 of the supplemental material). This method was applied 

to the rainfall datasets, leading to the selection of three distinct rainfall scenarios 

corresponding to the 20th (low), 50th (medium) and 80th (high) percentiles of total annual 

rainfall for each year. The corresponding years for each scenario were as follows: for 

Cafine, 1995, 1980, and 2018; for Djobel, 1980, 1988, and 1995; for Elalab, 1994, 1979, 

and 2000, respectively (Figure. 6.4). 



240 

 

Full meteorological reanalysis data for these years were also downloaded to calculate ETo 

using the FAO56 Penman-Monteith method (Allen et al., 1998). A simple BIAS 

correction was then applied, calibrated, and validated for Guinea-Bissau (Garbanzo et al., 

2025b). This data was subsequently used for calculating ETc and the soil water balance 

following the same methodological approach outlined above. Crop growth data for the 

main rice varieties in each village were also considered (Table 6.2). 

 

Figure. 6.4. Rainfall scenarios in Cafine (A), Elalab (B), and Djobel (C) based on AgERA 

5 reanalysis data. 

A

B

C

Years
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4. Results and discussion 

4.1. Model performance 

Figure. 6.5 presents the measured and simulated SWC for four study sites, with the 

calibrated parameters detailed in Table 6.3. For all sites, initial SWC values were low but 

increased with the onset of the rainy season. Eventually, SWC reached saturation, 

forming a surface water layer that created favorable conditions for rice transplanting and 

growth. SWC remained close to saturation until the end of the rainfall season, after which 

they decreased at most sites, facilitating grain drying and harvesting. The Elalab site was 

an exception to this pattern, since the SWC values in the upper soil layers declined before 

the transplanting period. This anomaly can be explained by farming operations that were 

taking place at the time, which probably changed the soil physical properties in the 

monitored area and affected sensor readings. According to the observations, soil 

compaction may have reduced saturation values. Despite this, SWC remained relatively 

stable for the rest of the growing season, suggesting that Elalab’s conditions were like 

those in the other fields, with SWC near saturation and the formation of a surface water 

layer. Therefore, data from Elalab were retained in the study. 

The HYDRUS-1D model effectively simulated measured values during both the 

calibration and validation periods, as indicated by the goodness-of-fit metrics presented 

in Table 6.4. Across all sites, the R² values exceeded 0.97, demonstrating that the model 

was able to explain most of the variance of measured data. The MAE and RMSE ranged 

from 0.015 to 0.082 m³ m⁻³ and 0.027 to 0.099 m³ m⁻³, respectively. NRMSE values were 

generally low. Nevertheless, the highest estimation errors were consistently measured at 

the Elalab site, likely due to the issues discussed earlier. BIAS and PBIAS values were 

near zero at all sites, indicating no significant over- or underestimation of measured 
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values, except at Elalab. Thus, despite variations in model fit quality, consistent trends 

were measured across all four study sites for all goodness-of-fit indicators during both 

calibration and validation periods, suggesting the model achieved a robust overall 

performance. 



243 

 

 

Figure. 6.5. Measured and simulated soil water contents (SWC) in the four study sites 

during 2023 (calibration) and 2022 (validation). TM, tidal mangrove; AM, 

Associated mangrove. 
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Table 6.3. Calibrated soil hydraulic and solute transport parameters. 

Village 
Soil Depth 

(m) 

θr 

(m3 m−3) 

θs 

(m3 m−3) 

α 

(cm−1) 

η 

(-) 

Ks 

(cm d−1) 

λ 

(cm) 

Cafine 

TM 

0.0 – 0.1 0.070 0.505 0.045 2.45 36.1 15 

0.1 – 0.2 0.090 0.505 0.021 2.60 78.0 60 

0.2 – 0.3 0.095 0.515 0.024 2.50 190.0 90 

0.3 – 0.4 0.095 0.495 0.045 1.90 106.0 90 

Cafine 

AM 

0.0 – 0.1 0.004 0.514 0.039 1.55 32.5 55 

0.1 – 0.2 0.064 0.497 0.031 1.59 78.0 55 

0.2 – 0.3 0.090 0.472 0.010 1.65 12.0 60 

0.3 – 0.4 0.004 0.528 0.009 1.60 5.1 60 

Djobel 

AM 

0.0 – 0.1 0.088 0.446 0.020 1.35 6.0 40 

0.1 – 0.2 0.098 0.443 0.013 1.60 8.1 40 

0.2 – 0.3 0.091 0.430 0.022 1.38 3.6 45 

Elalab 

AM 

0.0 – 0.1 0.006 0.492 0.025 2.40 374.0 35 

0.1 – 0.2 0.008 0.487 0.020 1.75 203.0 60 

0.2 – 0.3 0.054 0.565 0.010 1.25 316.0 90 

0.3 – 0.4 0.050 0.590 0.008 1.38 49.0 90 

TM, tidal mangrove; AM, Associated mangrove; θr and θs, residual and saturated water contents, 

respectively; α and η, empirical shape parameters; Ks, saturated hydraulic conductivity; ℓ, pore 

connectivity/tortuosity parameter; λ, soil dispersivity. 

Table 6.4. Goodness-of-fit for the comparison of measured and simulated soil water 

contents at the four study sites. 

Study sites 
R2 MAE RMSE NRMSE BIAS PBIAS 

(-) (m3 m-3) (m3 m-3) (%) (-) (%) 

Calibration (2023)       

Cafine TM 0.99 0.016 0.027 6.18 -0.01 -0.33 

Cafine AM 0.99 0.019 0.029 6.31 0.01 1.57 

Djobel AM 0.99 0.017 0.031 8.56 -0.01 -3.07 

Elalab AM 0.99 0.031 0.046 9.42 -0.01 -0.77 

Validation (2022) 

Cafine TM 0.99 0.016 0.030 6.72 0.01 0.25 

Cafine AM 0.99 0.015 0.028 6.07 0.01 0.72 

Djobel AM 0.99 0.025 0.040 10.93 -0.01 -1.31 

Elalab AM 0.97 0.082 0.099 20.52 -0.06 -12.8 

TM, tidal mangrove; AM, Associated mangrove; R2, coefficient of determination; MAE, mean 

absolute error; RMSE, root means square error; NRMSE, normalized root mean square error; 

PBIAS, percent Bias. 
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Similarly, HYDRUS-1D simulations effectively captured the overall trend of soil 

salinization across the study sites, with high ECe values at the beginning of the rainy 

season gradually decreasing to levels more suitable for rice cultivation (Figure. 6.6). The 

goodness-of-fit indicators were satisfactory (Table 6.5), with R² values consistently above 

0.82. The MAE and RMSE values exhibited large variation in the four study sites, ranging 

from 0.39 to 4.01 dS m⁻1 and 0.49 to 5.72 dS m⁻1, respectively. At the Elalab site, as 

expected, the poorer fit of the model to measured SWC data also affected ECe simulations, 

leading to higher estimation errors. However, the model successfully captured the same 

trends of field data. There was a consistent tendency to underestimate measured ECe 

values across all study sites, as indicated by the negative BIAS and PBIAS values. 
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Figure. 6.6. Measured and simulated values of electrical conductivity of the saturation 

paste extract (ECe) at the four study sites during 2023 (calibration) and 2022 

(validation). TM, tidal mangrove; AM, Associated mangrove. 
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Table 6.5. Goodness-of-fit for the comparison of measured and simulated values of the 

electrical conductivity of the saturation paste extract (ECe) at the four study 

sites. 

Study sites 
R2 MAE RMSE NRMSE BIAS PBIAS 

[-] [dS m-1] [dS m-1] [%] [-] [%] 

Calibration (2023)       

Cafine TM 0.95 1.50 1.68 34.84 -1.42 -29.41 

Cafine AM 0.94 2.06 2.70 41.88 -1.98 -30.69 

Djobel AM 0.93 0.52 0.65 35.79 -0.47 -25.93 

Elalab AM 0.90 4.01 5.72 46.26 -3.96 -32.96 

Validation (2022) 

Cafine TM 0.92 0.77 1.20 32.34 0.28 7.56 

Cafine AM 0.82 1.88 2.57 62.37 -0.51 -12.48 

Djobel AM 0.93 0.39 0.49 27.41 -1.88 -10.34 

Elalab AM 0.85 3.23 4.09 42.34 -0.21 -0.209 

TM, tidal mangrove; AM, Associated mangrove; R2, coefficient of determination; MAE, mean 

absolute error; RMSE, root means square error; NRMSE, normalized root mean square error; 

PBIAS, percent Bias. 

 

The HYDRUS-1D model has been widely used to evaluate irrigation water 

management in paddy fields (Li et al., 2015, 2014; Mo’allim et al., 2018; Shekhar et al., 

2020), but few studies so far have focused on salinity management (Phogat et al., 2010). 

Additionally, the model has been extensively applied to soil salinity management in 

various agricultural systems with shallow saline groundwater conditions (Forkutsa et al., 

2009; Guo et al., 2024; Karimov et al., 2014; Ramos et al., 2023), which may partially 

resemble those in the study areas. While these applications have provided valuable 

insights into addressing various management challenges, the modeling approach typically 

used, simulating ECsw as a non-reactive tracer, remains relatively simplistic.  

As a result, deviations between model results and observations may become more 

pronounced when omitted processes become relevant. In this study, model performance 

was generally acceptable across all sites. However, a closer analysis of Figure. 6.6 reveals 

larger deviations between model results and measured data across all sites during the non-
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growing season compared to the growing period. Simulated ECe values were generally 

higher than the measured data, suggesting that precipitation and dissolution processes, 

which were not accounted for in the modeling approach, may have played a significant 

role during the dry period. Salt precipitation, influenced by both rainfall water and soil 

chemistry, affects soil-solution salinity. In arid regions, calcite precipitation often occurs 

during irrigation at low leaching fractions, reducing the salt load by 5–25% at the bottom 

of the root zone and lowering ECsw throughout most of the root zone, except for the upper 

layer. When irrigation water contains elevated concentrations of sulfate and calcium, 

gypsum precipitation can also significantly reduce root zone ECsw (Hopmans et al., 2021; 

Letey et al., 2011). Although the study sites were not irrigated, the dry conditions that led 

to salt accumulation in the soil profile during the non-growing season further promoted 

salt precipitation, as observed in situ (Garbanzo et al., 2024b; Merkohasanaj et al., 2025). 

An additional factor reducing ECsw below the levels predicted by simulation models 

during the non-growing season dry period is the nonlinearity between water EC and actual 

salt concentration (Letey et al., 2011). While the EC-to-salt concentration ratio decreases 

with increasing concentration, the model keeps assuming a ECsw increase as SWCs 

decrease (Ramos et al., 2011). Further issues related to conversion factors include the 

ECsw/ECe = 2 relationship used in HYDRUS-1D. This ratio, based on a common 

approximation for soil water contents near field capacity in medium-textured soils, may 

vary for soils with different textures and moisture levels (Skaggs et al., 2006), such as the 

dry condition observed at the beginning of the simulation period and the saturated 

conditions measured later during the growing season. Moreover, this relationship differs 

from those used for converting soil sensor data, potentially introducing inconsistencies 

when comparing measured and simulated datasets. 
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Lastly, as in any modeling application, goodness-of-fit depends on the quality of 

the measured data. In extremely dry conditions, sensors used to measure SWC and ECb 

may be less reliable (Corwin and Lesch, 2005). Water is the primary medium for electrical 

current conduction, and ion mobility is also significantly reduced at lower SWCs. 

Additionally, the relationship between SWC and ECb becomes highly nonlinear outside 

the sensor's calibration range, complicating the accurate interpretation of sensor data. 

Furthermore, in dry soils, the contact between electrodes and the soil is less effective, 

increasing electrical resistance at the interface and resulting in inaccurate readings. 

4.2.  Salinity impact on rice yields 

Table 6.6 summarizes the soil water balance for the four study sites during the 2022 

and 2023 rice growing seasons, calculated using HYDRUS-1D. It also details the 

estimated effects of osmotic stress on crop transpiration rates and their subsequent 

impacts on rice yields. Precipitation is reported for the pre-season (from the start of 

simulations to the transplanting date at each site and growing season) and the growing 

season itself. Because plots are surrounded by bunds, which allow for the full capture and 

retention of rainwater, total precipitation is considered to be effectively harvested and 

used within the system. However, due to the characteristics of MSRP systems, the soil 

water balance for the growing season includes infiltrated water as an input, as water may 

originate during the pre-season, instead of the effective precipitation term typically used 

in soil water balance analyses. The soil water balance closing errors are small, ranging 

from 0.0% (Elalab AM field, 2022) to 3.31% (Elalab AM fields, 2023), being primarily 

due to rounding in intermediate calculations. 

As shown in Section 3.1, soil salinity in the monitored sites tends to increase 

significantly during the dry season as salts are transported upwards from the saline 
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groundwater table due to high soil evaporation. In tidal areas, salinity further increases 

when the soil surface is temporarily submerged by seawater. With the onset of the rainy 

season, soil salinity in the rice fields decreases to levels suitable for cultivation. Longer 

rainy seasons and greater rainfall enhance the leaching of salt from surface layers, 

creating favorable conditions for rice growth. 

Djobel AM fields exhibited the most favorable conditions for rice cultivation during 

both years. This site is located further away from the coast (Figure. 6.1) and recorded the 

lowest ECgw values (17.7 dS m⁻¹) compared to the other sites. Despite the high silt content 

in the soils, which can hinder salt leaching, the substantial rainfall both before the growing 

season (1,003–1,325 mm) and during the growing season (362–242 mm) efficiently 

leached salts and maintained ECe values below the defined threshold (3.0 dS m-1) during 

both growing periods. Therefore, root water uptake and rice yields were unaffected by 

osmotic stress. 

In Cafine, salt dynamics differed significantly between tidal and associated areas. 

Initial ECe and ECgw values were slightly higher in the tidal area compared to the 

associated area. In 2022, higher rainfall (>2,600 mm) was sufficient to leach salts from 

the associated area but not the tidal area, primarily due to higher infiltration rates in the 

associated area. Additionally, from the middle of the growing season onward (Figure. 

6.6), significant capillary rise fluxes in the tidal area caused salts to move upward into the 

root zone, adversely affecting crop yields. In 2023, lower rainfall levels led to reduced 

pre-season leaching in both areas. While the amount of infiltrated water during the 

growing period was comparable to the previous year, the reduced pre-season rainfall was 

less effective at removing salts, further impacting crop yields. 
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Elalab exhibited the most challenging conditions for rice cultivation. The GWD 

was shallower (0–1.35 m) and more saline (ECgw of 54.1 dS m⁻¹) compared to other 

sites. Despite substantial rainfall both before (1,091–1,508 mm) and during (282–366 

mm) each growing season, along with sandy soils that could potentially promote drainage, 

the rainfall was insufficient to lower root-zone ECe values below the defined threshold 

(3.0 dS m⁻¹) in either growing period. As a result, root water uptake was significantly 

affected, leading to an estimated yield reduction of 44% to 60% compared to rice grown 

under optimal conditions.
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Table 6.6. Soil water balanced during the 2022 and 2023 rice growing season. 

Villages 

P  Growing season 

PNGS PGS I CR ∆SS Tc Tc act Es DP  1-Tc act/Tc 1-ETc act/ETc 1-Ya/Ym 

[mm] [mm] [-] 

Cafine TM 

2022 2376 287  337 210 0 249 223 128 197  0.11 0.07 0.09 

2023 1419 442  309 141 0 241 176 114 168  0.27 0.18 0.23 

Cafine AM 

2022 2314 339  800 0 0 217 216 106 498  0.01 0.01 0.01 

2023 1393 467  722 6 4 267 231 119 386  0.13 0.09 0.12 

Djobel AM 

2022 1325 242  529 1 50 217 216 106 272  0.00 0.00 0.00 

2023 1003 363  694 18 25 267 267 124 355  0.00 0.00 0.00 

Elalab AM 

2022 1508 282  316 87 39 290 151 100 191  0.48 0.36 0.44 

2023 1091 366  369 91 47 312 102 127 295  0.67 0.48 0.60 

 

TM, tidal mangrove; AM, Associated mangrove; P, precipitation; PNGS, precipitation in non-growing season; PGS, precipitation in growing season; I, Infiltration; CR, capillary 

rise; Tc, potential crop transpiration; Tc act, actual crop transpiration; Es, soil evaporation; DP, deep drainage, ∆SS, variation in soil water storage; ETc, potential crop 

evapotranspiration, ETc act, actual crop evapotranspiration; Ya, actual yield; Ym, maximum yield. 
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4.3.  Rainfall and groundwater depth scenarios 

Table 6.7 summarizes the results of modeling scenarios that account for low, 

medium, and high rainfall seasons, as well as shallow and observed GWD conditions. 

Table 6.7 presents the mean rootzone electrical conductivity (ECe mean) during the 

growing season, the number of days with ECe below the salinity tolerance threshold (3.0 

dS m⁻¹) for both the growing season and the entire simulation period, and the relative 

effects of soil salinity on crop evapotranspiration rates and crop yields. For all the 

scenarios, the most adverse conditions consistently occurred with lower seasonal rainfall 

and shallower GWD. 

Consistent with field monitoring results, Djobel demonstrated the most favorable 

conditions for rice production in every scenario since the ECe mean generally remained 

below the salinity tolerance threshold. Furthermore, in cases where ECe exceeded the 

defined threshold (low and medium rainfall with shallow GWD scenarios), the impacts 

on crop yields were minimal (<6%). Although rainfall distribution and root water uptake 

significantly influence these outcomes, it is reasonable to assume that under the measured 

GWD conditions, the salt-free period could be extended. This extension may allow for 

earlier rice transplantation, anticipating the growing season to mitigate potential salinity 

issues at its end (Figure. 6.7). However, under shallow GWD conditions, this strategy 

may fail, as the salt-free period might be shorter than the period used to define the growing 

season. In the worst-case scenario (low rainfall and shallow GWD), no salt-free period 

occurs, though, as noted, the impacts on crop yields remain minimal. 

In the Cafine AM site, conditions for rice cultivation were acceptable for most 

scenarios. Although only the most favorable scenario exhibited a mean ECe below the 
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salinity tolerance threshold and a salt-free period extending beyond the growing season 

(Figure. 6.S3, supplemental material), the impacts on crop yields were relatively minor 

(<10%) in most scenarios, except under the worst-case conditions (low and medium 

rainfall with shallow GWD). In contrast, scenarios for the Cafine TM site consistently 

failed to provide satisfactory conditions for rice cultivation (Figure. 6.S4, supplemental 

material), with yield reductions ranging from 19% to 46%. At the Elalab site (Figure. 

6.S5, supplemental material), conditions were even more unfavorable, with estimated 

yield reductions ranging from 58% to 82%. 
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Table 6.7. Estimated salt-free period for different rainfall (low, medium, and high) and groundwater depth (shallow and measured GWD) 

scenarios and corresponding impacts on crop yields (ECe threshold = 3.0 dS m-1). 

Scenarios 

 

ECe mean Nº Days ECe < ECe threshold 1-Tc act/Tc 1-ETc act/ETc 1-Ya/Ym 

[dS m-1] 
Growing 

season 
Simulation period [-] [-] [-] 

Cafine TM       

Low rainfall x GWDobserved 5.2 0 0 0.28 0.20 0.25 

Low rainfall x GWDshallow 7.6 0 0 0.53 0.37 0.46 

Medium rainfall x GWDobserved 4.8 0 0 0.22 0.16 0.19 

Medium rainfall x GWDshallow 6.8 0 0 0.43 0.30 0.38 

High rainfall x GWDobserved 4.3 0 0 0.21 0.15 0.19 

High rainfall x GWDshallow 6.1 0 0 0.42 0.29 0.37 

Cafine AM       

Low rainfall x GWDobserved 5.1 0 0 0.22 0.16 0.20 

Low rainfall x GWDshallow 8.1 0 0 0.48 0.34 0.43 

Medium rainfall x GWDobserved 4.2 0 0 0.11 0.08 0.10 

Medium rainfall x GWDshallow 6.7 0 0 0.37 0.26 0.33 

High rainfall x GWDobserved 2.7 55 82 0.07 0.05 0.07 

High rainfall x GWDshallow 4.5 0 0 0.18 0.13 0.16 

Djobel AM       

Low rainfall x GWDobserved 2.4 69 129 0.01 0.01 0.01 

Low rainfall x GWDshallow 3.9 0 0 0.07 0.05 0.06 

Medium rainfall x GWDobserved 2.0 76 142 0.00 0.00 0.00 

Medium rainfall x GWDshallow 3.1 45 45 0.02 0.02 0.02 

High rainfall x GWDobserved 1.8 78 153 0.00 0.00 0.00 

High rainfall x GWDshallow 2.7 64 64 0.01 0.01 0.01 

Elalab AM       

Low rainfall x GWDobserved 10.3 0 0 0.74 0.55 0.69 

Low rainfall x GWDshallow 11.5 0 0 0.88 0.65 0.82 

Medium rainfall x GWDobserved 8.9 0 0 0.63 0.47 0.58 

Medium rainfall x GWDshallow 15.4 0 0 0.80 0.59 0.74 

High rainfall x GWDobserved 8.6 0 0 0.66 0.50 0.62 

High rainfall x GWDshallow 9.8 0 0 0.83 0.62 0.77 

TM, tidal mangrove; AM, Associated mangrove; ECe mean, mean ECe in the rootzone; Tc, potential crop transpiration; Tc act, actual crop transpiration; ETc, potential crop 

evapotranspiration, ETc act, actual crop evapotranspiration; Ya, actual yield; Ym, maximum yield. 
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Figure. 6.7. Salt-free period (grey area) for the rainfall scenarios (low, medium, and high) 

and groundwater depth (GWD identifies shallow groundwater depth) 

conditions at the Djobel Associated Mangrove (AM) site (ECe threshold = 3.0 

dS m-1). 

The scenario analysis emphasizes the need for cultivating salt-tolerant rice varieties 

in Cafine TM (and eventually Cafine AM) and Elalab. Due to the lack of specific 

information on the ECe thresholds for the varieties grown in these areas (Yakasau, Caublack, 

Edjur, and Tomor), the commonly accepted threshold limit for rice (3.0 dS m⁻¹) was used 

in the present study. However, since some of these varieties may exhibit higher salinity 

tolerance than the defined threshold, additional simulation scenarios were conducted, 

considering an ECe threshold of 5.0 dS m⁻¹ for both Cafine locations and 10 dS m⁻¹ for Elalab 

(Table 6.8). These ECe thresholds are provided solely for illustrative purposes, as they are 

defined based on a review of existing literature review (Fageria, 1985; Haque et al., 2021; 
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IRRI, n.d.; Reddy et al., 2017), since the crop tolerance thresholds values for local 

varieties are unknown. 

Although the mean ECe rootzone values remain unchanged, the use of salt-tolerant 

crop varieties in Cafine TM and Cafine AM offers a promising opportunity to boost crop 

production by mitigating the effects of salinity on yields. Furthermore, under the 

measured GWD conditions, the period during which salinity levels remain below the 

assigned threshold is prolonged in both locations. In Cafine TM, this extension facilitates 

the scheduling of transplanting dates with a reduced risk of salinity affecting rice yields 

(Figure. 6.8), similarly to the conditions measured in Djobel. On the other hand, in Cafine 

AM, improvements in salt conditions are evident only toward the end of the cropping 

season (Figure. 6.9). In Elalab, the rice-growing conditions also improve around the 

middle of the cropping season (Figure. 6.10). However, crop yields are inevitably 

reduced, by 19% to 48%, due to persistently high salinity levels at this site. 
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Table 6.8. Estimated salt-free period for different rainfall (low, medium, and high) and groundwater depth (shallow and measured GWD) 

scenarios and corresponding impacts on crop yields. 

Scenarios 

ECe mean Nº Days ECe < ECe threshold 1-Tc act/Tc 1-ETc act/ETc 1-Ya/Ym 

[dS m-1] 
Growing 

season 
Simulation period [-] [-] [-] 

Cafine TM (ECe threshold = 5.0 dS m-1)       

Low rainfall x GWDobserved 5.5 37 61 0.08 0.06 0.07 

Low rainfall x GWDshallow 7.8 0 0 0.27 0.19 0.23 

Medium rainfall x GWDobserved 4.9 53 84 0.12 0.09 0.11 

Medium rainfall x GWDshallow 7.0 0 0 0.36 0.26 0.32 

High rainfall x GWDobserved 4.4 52 94 0.08 0.05 0.07 

High rainfall x GWDshallow 6.4 0 0 0.26 0.18 0.23 

Cafine AM (ECe threshold = 5.0 dS m-1)       

Low rainfall x GWDobserved 5.0 47 54 0.10 0.07 0.09 

Low rainfall x GWDshallow 8.0 0 0 0.28 0.20 0.25 

Medium rainfall x GWDobserved 4.1 63 75 0.06 0.04 0.07 

Medium rainfall x GWDshallow 6.6 11 15 0.20 0.14 0.18 

High rainfall x GWDobserved 2.6 78 105 0.07 0.05 0.06 

High rainfall x GWDshallow 4.4 54 69 0.14 0.10 0.13 

Elalab AM (ECe threshold = 10.0 dS m-1)       

Low rainfall x GWDobserved 12.1 19 19 0.34 0.25 0.31 

Low rainfall x GWDshallow 13.7 0 0 0.52 0.39 0.48 

Medium rainfall x GWDobserved 10.2 59 77 0.21 0.16 0.19 

Medium rainfall x GWDshallow 12.2 11 11 0.39 0.29 0.36 

High rainfall x GWDobserved 10.1 50 87 0.27 0.20 0.26 

High rainfall x GWDshallow 11.8 31 36 0.47 0.35 0.43 

TM, tidal mangrove; AM, Associated mangrove; ECe mean, mean ECe in the rootzone; Tc, potential crop transpiration; Tc act, actual crop transpiration; ETc, potential crop 

evapotranspiration, ETc act, actual crop evapotranspiration; Ya, actual yield; Ym, maximum yield. 
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Figure. 6.8. Salt-free period (grey area) under varying rainfall scenarios (low, medium, 

and high) and groundwater depth (GWD identifies shallow groundwater 

depth) conditions at the Cafine Tidal Mangrove (TM) site (ECe threshold = 5.0 

dS m-1). 
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Figure. 6.9. Salt-free period (grey area) under varying rainfall scenarios (low, medium, 

and high) and groundwater depth (GWD identifies shallow groundwater 

depth) conditions at the Cafine Associated Mangrove (AM) site (ECe threshold 

= 5.0 dS m-1). 
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Figure. 6.10. Salt-free period (grey area) under varying rainfall scenarios (low, medium, 

and high) and groundwater depth (GWD identifies shallow groundwater 

depth) conditions at the Elalab Associated Mangrove (AM) site (ECe threshold 

= 10.0 dS m-1). 

4.4.  Driving mechanisms for salinity build-up in MSRP 

The findings of this study provide quantitative insights into the issues reported by 

(Bos et al., 2006) and Van Ghent and Ukkerman, (1993), who highlighted the likelihood 

of salinity problems in MRSP areas resulting from saline water intrusion and the upward 

movement of salts from deeper soil layers through capillary fluxes. These factors often 

lead to severe disruptions or complete loss of annual rice production. Despite the 

challenges discussed earlier, model simulations effectively captured the dynamics of soil 

water and salinity in MSRP field. During the non-growing season, SWCs are low, leading 

to significant salt accumulation in the root zone. This salinity build-up primarily results 

from salts transported upward by capillary fluxes driven by soil evaporation. In tidal 
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areas, tidal effects can also cause additional salt deposition on the soil surface. At the 

onset of the rainy season, soil salinity gradually decreases to levels suitable for rice 

cultivation. The extent of this reduction depends on the seasonal rainfall amount and 

distribution, groundwater depth, and groundwater salinity. 

Seasonal rainfall provides the primary mechanism for flushing salts from the root 

zone. In the monitored period and modeling scenarios, years with the highest rainfall 

consistently produced the most favorable conditions for rice growth. However, prolonged 

dry spells can allow salts to migrate back into the root zone through upward fluxes. In 

irrigated paddy fields located in salt-affected areas, this issue would be more easily 

handled with irrigation (Kitamura et al., 2006; Marcos et al., 2018; Sugimori et al., 2008; 

Zeng et al., 2003). In contrast, MSRP systems, which rely solely on rainfall, depend 

heavily on well-distributed rainfall to prevent salinity build-up and avoid osmotic stress 

that could compromise crop yields. This challenge was particularly evident in the soil 

water balance estimates for the Cafine and Elalab sites. 

Similar to other agricultural systems with shallow groundwater, the depth of the 

groundwater influences the effectiveness of salt leaching (Guo et al., 2024; Karimov et 

al., 2014; Liu et al., 2022; Narjary et al., 2021; Ramos et al., 2023). The shallower the 

groundwater, the more difficult it becomes to flush salts away from the root zone, and the 

stronger the upward fluxes during dry spells in the growing season when rainfall fails. In 

this study, the modeled scenario with a shallower initial GWD always presented worse 

conditions for salt leaching than those scenarios with deeper initial GWD, in cases of 

dikes’ degradation and/or occurrence of significant high and strong tidal events. 

Naturally, the closer the agricultural fields are to the shoreline, the higher the risk of saline 

water intrusion, the worse the quality of groundwater, and the higher the risk of more salts 

moving upward and soil salinity build-up. 
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4.5.  Soil salinity management in MSRP systems 

Rice is classified as a sensitive crop to salinity-stress (Ayers and Westcot, 1985; 

Minhas et al., 2020). Thus, in MSRP it is essential to reduce soil salinity to levels suitable 

for rice production. However, as demonstrated in this study, the inter- and intra-annual 

variability of rainfall amounts and distribution significantly affects salt dynamics, posing 

serious challenges to rice cultivation under rainfed agriculture. During drought 

conditions, elevated soil salinity will inevitably impact rice yields. In a climate change 

context, prospects are further uncertain. While the MSRP systems rely solely on rainfall 

to lower soil salinity, adopting improved management practices is recommended to 

mitigate salinity and support sustainable rice production. However, although the 

principles for cultivating crops in saline environments are well understood and promote 

the use of specialized crop-soil-water management techniques, it is crucial to 

acknowledge that profit margins for agriculture under saline conditions are typically low, 

and saline soils always present a risk of crop failure (Minhas et al., 2020). Consequently, 

while some practices and strategies can enhance rice production in the study areas, they 

alone cannot close the significant yield gap between low external-inputs agriculture in 

these marginal regions and the more productive edaphoclimatic regions, namely of Asia, 

where rice is cultivated with mechanization, irrigation, a heavy use of agrochemical and 

the so-called high yielding varieties (HYV), which would not survive under Guinea-

Bissau’s MSRP fields.  

This study clearly illustrates the importance of identifying the optimal window for 

growing rice in associated and tidal mangrove areas. While, in most sites, this period does 

not exactly correspond to a salt-free period as defined by Guei et al., (1997), it remains 

the only time when conditions for growing rice are most favorable. Depending on the 
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amount of rainfall, rice transplantation in some locations (e.g., Djobel) could occur earlier 

than the dates considered in this study. This would prevent salinity from impacting crop 

growth at the end of the growing cycle as rainfall ceases. Alternatively, since the dry 

period is essential for drying grains, to bring forward to transplant earlier would also 

enable the cultivation of more productive rice varieties with longer growing cycles. For 

this reason, establishing a monitoring network for soil salinity levels is crucial. 

In some locations, soil salinity levels never drop below the threshold defined in 

literature as the tolerance limit for rice. In such cases, and depending on the amount of 

rainfall, the impacts on the crop throughout the season may be minor (e.g. Cafine AM). 

However, in other situations, rice production may only be viable by growing salinity-

tolerant varieties (e.g., Cafine TM, Elalab AM). This could explain the preferences of 

farmers for certain rice varieties, which are locally described as highly resistant to salinity 

(Temudo, 2011). However, precise information on the ECe thresholds of these varieties 

is still lacking, highlighting a significant gap in understanding their full potential under 

saline conditions. Gaining knowledge of the local ECe thresholds will help identify 

optimal salinity tolerance levels and improve rice cultivation strategies in the country by 

leveraging the potential of local rice varieties.  

To mitigate global warming impact on MSRP it is crucial to keep the groundwater 

table at deeper levels at the start of the rainfall season, thereby facilitating early salt 

leaching and minimizing soil salinity levels. For this purpose, an increase in the width 

and height of the main dike, the regular maintenance of MSR fields’ dikes and related 

drainage structures is mandatory. Additionally, the selection of the most salt- and 

drought-tolerant local varieties for risk-prone areas and a better adaptation of the 

agricultural calendar to present rainfall distribution conditions are also the most needed 

adaptation measures. 
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5. Conclusions 

This study simulated the soil water and salinity dynamics in the mangrove swamp 

rice production system of Guinea-Bissau, which is essential for food security but faces 

several environmental challenges due to the critical role of rainfall in the viability of rice 

production. The HYDRUS-1D model was successfully used to describe the salt dynamics 

in four locations, with RMSE varying from 0.49 to 5.72 dS m⁻1 and NRMSE values 

ranging from 27.4% to 62.3%. The main factors influencing soil salinity involving 

seasonal rainfall amount and distribution, and groundwater depth and quality. 

Management strategies to address soil salinity were also discussed, such as the possibility 

of growing longer and more productive varieties in certain areas or the need to cultivate 

salt-tolerant varieties in others. The maintenance and improvement of drainage structures 

was found to be critical for minimizing salinity issues in paddy fields. 

While these findings may help improve the livelihoods of local populations, rice 

production in GB faces additional limitations that keep production levels behind those of 

similar areas worldwide, particularly in the absence of support from governmental and 

external entities. Future studies should focus on refining groundwater management 

strategies, particularly regarding the maintenance of optimal groundwater levels to 

mitigate the impact of salinity stress on rice growth. Additionally, further research is 

needed to determine the salinity tolerance thresholds of locally adapted rice varieties, as 

these thresholds were shown to vary significantly across the studied sites. Understanding 

these thresholds will be crucial for developing targeted cultivation strategies, ensuring the 

optimal transplanting period, and improving rice production. Considering the potential 

reintroduction of brackish water during the dry season in fields with modern water 

management infrastructures, the model developed is going to be further improved to this 

aim in collaboration with some of the country’s organizations.  
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6. Supplementary material 

6.1. Supplementary A. Sensor Calibration  

 

 

Figure. 6.S1. Comparison of volumetric water content and electrical conductivity values 

using sensor Teros 12 and observed / laboratory information. 
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6.2. Supplementary B. Rainfall correction  

 

 

Figure. 6.S2. Calibration of ERA 5 reanalysis using slope, bias and linear scaling 

correction for rainfall in Guinea-Bissau, west Africa. 
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6.3. Supplementary C. Modeling conditions at the Cafine Tidal site. 

 

 

Figure. 6.S3. Salt-free period (grey area) under varying rainfall scenarios (low, medium, 

and high) and groundwater depth (GWD identifies shallow groundwater 

depth) conditions at the Cafine Tidal site (ECe threshold = 3.0 dS m-1). 
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6.4. Supplementary D. Modeling conditions at the Cafine Associated site. 

 

 

Figure. 6.S4. Salt-free period (grey area) under varying rainfall scenarios (low, medium, 

and high) and groundwater depth (GWD identifies shallow groundwater 

depth) conditions at the Cafine Associated site (ECe threshold = 3.0 dS m-1). 
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6.5. Supplementary B. Modeling conditions at the Elalab Associated site. 

 

 

Figure. 6.S5. Salt-free period (grey area) under varying rainfall scenarios (low, medium, 

and high) and groundwater depth (GWD identifies shallow groundwater 

depth) conditions at the Elalab Associated site (ECe threshold = 3.0 dS m-1). 
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Chapter 7 

 

 

General Discussion and Conclusions 
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7. Discussion  

7.1.  Integrating Chapter Findings: understanding of Soil Properties, 

Water Management, and Salinity in MSRP 

This thesis introduces a novel approach for characterizing the physicochemical properties 

of soils in mangrove swamp rice fields and quantifying the soil hydro-saline balance. 

Considering a regional perspective by evaluating rice production management in different 

coastal villages in the northern and southern regions of GB, using the rice fields of Elalab 

and Cafine – Cafal villages respectively, as case studies. In some instances, existing 

information from the Oio region (more at the center of the coastal area) was also 

considered, with Enchugal serving as a case study to examine the spatial distribution of 

salinity. The results underscore the importance of integrating agro-ecological site 

descriptions to elucidate the influence of environmental constraints on water regulation 

and salinity dynamics on a regional scale. Distinctive micro-environments are generated 

by differences in rainfall distribution, soil composition and tidal regimes, and these 

inform and support local farmers’ management decisions. This comprehensive approach 

enables a comparative understanding of system characteristics at a national level. 

Chapter 2 provided an in-depth analysis of the structural and functional features of the 

Mangrove Swamp Rice Production (MSRP) system, emphasizing the challenges arising 

from insufficient knowledge regarding soil and water management practices. The analysis 

identified recurrent dike failures, inadequate agricultural infrastructure and spatio-

temporal variability in rainfall as key factors that necessitate the adoption of site-specific 

management strategies by both farmers and institutional actors. The three main 

constraints were the lack of information on weather variables, irregular rainfall 

distribution, and limited knowledge of land and water management. Understanding the 
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environmental and infrastructure challenges helps to recognize where the MSRP system 

is vulnerable and how local communities have come up with practical ways to adapt and 

handle those challenges. 

Insights derived from farmer interviews, initially presented in Chapter 2 and further 

substantiated by the analyses in Chapter 3, reveal that the management of the MSRP 

system is predominantly governed by indigenous, experience-based knowledge 

embedded within specific ethnic traditions. Notably, communities in the northern regions 

demonstrate greater proficiency in water management than those in the south (Figure 3.7), 

largely due to adaptive modifications in plot geometry and bund construction aimed at 

maximizing water retention (Figures 3.5 and 3.6). The Chapter 3 findings suggest that the 

configuration and scale of plots and bunds in northern sites are more effective at 

regulating water levels than their southern counterparts. 

This opened the possibility of studying the distribution of salt both at the plot and whole 

field levels. Results showed that salt concentrations could reach levels exceeding 

hypersalinity in tidal mangrove areas (TM) (Figure 4.6). In contrast, other regions of the 

rice fields, such as the associated mangrove (AM), showed low or negligible salt 

concentrations. This suggests that it is highly probable that the AM plots exhibit lower 

levels of hypersalinity compared to TM ones, which aligns with the literature reviewed 

in Chapter 2. Despite this contrast, local farmers tend to favor TM areas for cultivation, 

because they value their higher soil fertility and superior rice yields, even though such 

sites are more exposed to environmental risks. 

Furthermore, this thesis introduces practical applications using two types of maps to 

optimize system management. The first set of soil plasticity maps introduced in Chapter 

3, serve as operational tools to support decision-making during land preparation. These 
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maps enable farmers to determine the optimal water content for tillage, allowing them to 

align their labor input with the most suitable moisture conditions for ploughing. This 

study demonstrated significant variation in soil texture and plastic limits both within a 

single village and between different villages, providing farmers with valuable insights for 

their management decisions.  

The second analytical tool, presented in Chapter 4, focuses on identifying spatial 

gradients of soil salinity and distinguishing between areas of low and high salt 

concentration. Building directly upon the framework established in Chapter 3, this study 

employs soil texture as a covariate to improve the accuracy of identifying saline site. 

Accurate identifying these areas enables more targeted plot management, allowing 

desalination techniques to be explicitly applied to the most hypersaline locations. A 

practical example would be selecting salt-tolerant rice varieties and planting them in these 

hypersaline areas. However, this system is vulnerable to dike breaches (See Video: 

https://www.youtube.com/watch?v=niwk9uxXQC0), which must be quickly repaired, as 

such breaches lead to increased salt concentrations, crop production failure, and hunger 

in the following year. Therefore, accurately identifying saline sites would improve the 

management of the MSRP, where either desalination techniques or salt-tolerant varieties 

could be applied to specific sites, enabling site-specific production strategies within the 

system.  

Then, Chapters 2, 3, and 4 provide essential data for the development of the saline water 

balance model for the MSRP system. Chapter 2 identifies key constraints related to 

rainfall variability and ECe, highlighting the importance of incorporating low, medium, 

and high rainfall scenarios into the saline balance analysis. Chapter 3 contributes critical 

parameters for model calibration, including the physical characteristics of the study sites 

and detailed information on the rice varieties cultivated by local farmers. These include 

https://www.youtube.com/watch?v=niwk9uxXQC0
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the most widely used varieties, their phenological stages, and typical planting and 

harvesting schedules. In addition, chapter 4 presents the identification of saline zones and 

observed ECe concentrations present within the MSRP system. This information is basic 

for the parameterization and calibration of the Hydrus-1D model and for constructing 

realistic rainfall scenarios to simulate the system’s response under varying environmental 

conditions. 

Since the hydro-saline balance model was designed to simulate realistic conditions for 

rice cultivation, it was essential to incorporate crop-specific parameters such as crop 

transpiration (ETc) and soil evaporation (Es). Chapter 5 of this thesis focuses on the 

calculation of daily reference crop evapotranspiration (ETo) using the FAO Penman-

Monteith (FAO-PM) method, which is a key variable in determining ETc. ETo is therefore 

an analytical input for quantifying the saline water balance in the MSRP. This chapter 

introduces a practical tool developed for farmers and agricultural technicians in GB, 

allowing ETo to be estimated using only temperature data. That means, temperature is one 

of the most accessible and easy-to-measure meteorological variables, as it does not 

require specialized equipment and thermometers could be available in rural areas. With 

careful daily temperature readings, it is possible to indirectly calculate ETo, making this 

method particularly useful in data-scarce regions. In summary, the main outputs of this 

chapter were the estimation of ETo for each site using a simplified and accurate approach, 

and the potential use of gridded weather data in the absence of weather station 

observations. 

The thesis is also linked to other research lines within the Malmon project, such as the 

analysis of physicochemical characteristics discussed by Merkohasanaj et al. (2025) and 

the rice crop monitoring work discussed by Céspedes et al. (2025). These collaborations 
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establish a strong interdisciplinary nexus, fostering the integration of soil science, 

agronomy, and environmental monitoring within a unified research framework. 

The physicochemical studies of soil profiles were essential for developing chapter 6. 

Merkohasanaj et al. (2025) involved detailed analyses of the soil's chemical and physical 

properties, providing valuable insights into the soil's fertility, salinity, and water retention 

capacity. Complementarily, Céspedes et al. (2025) conducted an in-depth characterization 

of rice plant growth dynamics, the outcomes of which were instrumental in the 

construction and calibration of the HYDRUS-1D monitoring model employed in this 

research. 

Finally, Chapter 6 explores how water and dissolved salts move through the soil, 

introducing the hypothesis that the rice varieties cultivated by local farmers are well 

adapted to the specific conditions of the MSRP system. This adaptation may allow the 

plants to uptake water more efficiently, even under saline conditions. In this part of the 

thesis, all previously generated outputs are integrated as inputs to construct the saline 

water balance. This framework is then used to analyze different scenarios in depth, 

focusing on how rainfall patterns and fluctuations in groundwater levels influence water 

availability and salinity dynamics within the system.  

However, Chapter 6 did not include an analysis to determine the salinity threshold of rice 

varieties in GB. This is a significant research gap, as understanding the salinity threshold 

of rice varieties is crucial for selecting the most suitable varieties for cultivation in 

different areas of GB. This underscores the need for further investigation into water and 

solute balances in MSRP soils, and inspires future studies in this area. 
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7.2.  Addressing knowledge Gaps: Spatial variability and salt 

accumulation in MSRP 

This study aligns with findings from existing literature on the identification and 

characterization of salt content in the system. First, it was found that the cations 

responsible for soil salinity in MSRP are Na and Mg, which is consistent with the finding 

of Andreetta et al., (2016), D’Amico et al., (2024), Merkohasanaj et al., (2022, 2025). 

Their concentration varied depending on proximity to the village, with some areas 

showing hypersaline characteristics as described by Sylla (1994) and Sylla et al. (1995). 

However, despite the high salt content in these sites under initial conditions, rice 

cultivation is still possible, provided that highly salt-tolerant varieties (e.g., Emana Manai, 

as discussed in Chapter 2) are used, along with a significant amount of freshwater 

harvested to dilute the salt concentrations. This strategy enables the establishment of a 

free-salt period, as described by Guei et al., (1997). As discussed in Chapter 6, the present 

study represents a significant contribution to the field. It provides a comprehensive 

understanding of water and solute movement dynamics in MSRP soils, which is crucial 

for adequate soil and water management in rice cultivation. This study is the first 

numerical approach to addressing the theoretical gaps identified by previous studies, and 

its findings are expected to guide and inspire future research in this area. 

Current tools to improve prediction and parameter calibration for better forecasting 

variables, such as ECe and shortwave radiation, were studied using the latter for ETo 

prediction. Firstly, machine learning algorithms worked exceptionally well for predicting 

ECe using soil texture variables and satellite indices. It is essential to highlight that 

algorithms such as Random Forest were far more effective than deep learning techniques, 

such as convolutional neural networks. On the one hand, this aligns with other studies on 
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salinity (e.g., Kaplan et al., 2023; Yang et al., 2023; Zhao et al., 2023). On the other hand, 

numerical solutions were essential for calibrating the shortwave radiation adjustment  

parameter (kRs) required to predict ETo using temperature data only (Paredes et al., 2018, 

2020; Paredes & Pereira, 2019). The L-BFGS-B algorithm (Byrd et al., 1995) was 

modeled and calibrated using the RMSE as the adjustment parameter. This approach 

minimized error, allowing for precise calibration of the kRs parameter for each location or 

sites cluster. 

Rainfall variation affects rice growth as it can result in poor dilution of salts in the plots. 

Field observations and continuous monitoring revealed that salts do not have an active 

outlet through plot drainage, as few sites can drain water, and no drainage systems are 

designed explicitly for this purpose. While northern and southern Balanta regions (e.g., 

Enchugal village in Oio and Cafine-Cafale villages in Tombali) implement drainage to 

plow the soil, this practice is rare in the northern region of S. Domingos, among the Felupe 

and Baiote (e.g., Elalab and Djobel villages). This discrepancy is primarily due to each 

area's varying amounts of rainfall. Typically, farmers close all possible outlets of the 

bunds, increase their height, and aim to capture as much rainwater as possible. 

However, this management practice does not effectively remove excess salts from the 

system. In contrast, regions with high salt concentrations (e.g., Cafine – Cafal, and 

Enchugal) employ drainage systems to flush out excess salts. (Fayrap & Koç, 2012; Xiao 

Pang et al., 2010), allowing for more efficient salinity management (Minhas et al., 2020; 

Ramos et al., 2023, 2024). MSRP operates under a completely different system, where 

such drainage practices are not applied in all cases. For example, in sites like Elalab, 

farmers prefer to plow with water, which increases the force required for plowing, rather 

than flushing freshwater. As a result, the lack of an effective drainage system in the plots 
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of many drought-prone regions leads to productivity relying solely on leaching and salt 

dissolution. 

Maps were generated at the medium scale of the plot level to identify hypersalinity within 

the MSRP. However, this study also identified significant small-scale variations within 

the system.  Chapter 3 determined, through 3D models, the heterogeneity found in the 

plots. This highlights that salt accumulation occurs heterogeneously among the plots and 

in the case of large ones, this variation can affect rice production at a plot level. This 

means that farmers struggle to control water levels inside them, which can involve the 

reduction of plot size as observed in the case study in Elalab.  

7.3.  Study limitations and implications for future research in MSRP 

This study was hampered by lack of prior research on rice growth and site 

characterization. This hindered the development of the baseline information essential for 

creating numerical models and simulations. For example, historical climate data for the 

regions under study was scarce and knowledge about the current rice varieties and their 

phenological development was limited.  

The availability of laboratories and research equipment in the country was also limited. 

This delayed the analysis of soil physicochemical characteristics, as well as extending the 

time required to conduct the studies. This restricted the direct analysis of ECe, and only 

data for EC1:5 and EC1:25, could be generated as these were more easily measured in the 

field and the country’s laboratories. However, the conversion of EC1:5 and EC1:25 to ECe 

present a problem with formulas calibrated by Sonmez et al. (2008). These formulas were 

designed for saline soils, not hypersaline soils, as presented in this study. This gap could 

be addressed by future research aimed at developing calibrated formulas for hypersaline 
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soils could address this gap, allowing for the transformation of EC from various solutions 

to ECe. 

Local rice varieties remain poorly characterized, requiring further research to determine 

growth aspects and salinity tolerance. Specifically, the salinity-tolerant varieties in MSRP 

have not yet been studied to assess their ECe threshold. Chapter 6 explores an approach 

to observing tolerance levels without affecting rice production. This knowledge gap 

should be further investigated in future research in the country.  

This study is limited to specific case studies within the country, focusing on rice fields 

from two villages in the south (Cafine and Cafal), one in the central region (Enchugal), 

and two in the north (Elalab and Djobel). Due to budget constraints and the considerable 

time required for analysis, only three rice fields were thoroughly examined for their 

physicochemical characteristics and spatial distribution. While this information 

approximates the behavior of salt concentration on rice fields in each region, it is essential 

to note that some sites within these regions may exhibit different characteristics than those 

observed in this study. Therefore, future research should consider expanding the number 

of case study sites for a more comprehensive understanding. 



281 

 

Conclusions and future research 

It was concluded that the physicochemical properties of the rice field soils are highly 

variable, with significant differences observed between associated mangrove soils and 

tidal mangrove soils. Most of the soils were classified as Inceptisols with Vertic 

characteristics. Various deposits of saltwater river sediments were identified, which 

influence the porosity of each soil horizon, and thereby affect the amount of water stored 

in the soil. However, this water is not fully available to the plants due to hypersalinity, 

which negatively impacts rice production, particularly in years with low precipitation, an 

early end to the rainy season, and/or prolonged dry spells. 

This study demonstrated that farmers have extensive knowledge of salt management in 

different plots. Simulations showed that rice transplanting was synchronized with the salt 

dilution in the plot, proving that farmers store sufficient water to complete the rice growth 

cycle. However, farmers face significant challenges in dry years because it is difficult to 

predict whether a certain year will be rainy or dry. Therefore, it is essential to use all 

harvested water efficiently, as observed in the northern regions where plots are smaller 

and more homogeneous.  

The plots are predominantly saline and hypersaline, and water harvesting is the primary 

method for desalinization. In several village in the southern and central regions, farmers 

leach excess salts from the soil, but this practice is only possible in areas where plots are 

equipped with drainage systems. However, such drainage designs are not feasible for all 

farmers, as many rice fields are designed specifically for rainwater harvesting. Therefore, 

the greater the capacity of water harvesting system, the lower the risk of production losses 

due to salinization. 
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Allowing brackish water into the rice fields will depend on the salt concentration of the 

river and the timing of the practice. Solute and water movement simulations, determined 

that the groundwater is highly saline, and the initial condition at a depth of 0.50 m would 

negatively affect rice production. If the initial water level was more significant than 1.50 

m in depth, the salinity of the groundwater did not affected the crop. Therefore, if this 

practice is carried out, the groundwater level must be below 1.50 m in May. This means 

that if brackish water is allowed in, it should be done before March. This practice could 

be implemented in the Oio region or in the south of the country. However, it is not 

recommended in the northern region. Further research is needed in this area particularly 

in the Oio region, where freshwater availability is higher than in other parts of the country.  

Sustainable rice cultivation in MSRP of GB depends on adapting farming practices to 

biophysical conditions and addressing soil salinity challenges under climate change. This 

study emphasizes the critical role of Na+ and Mg2+ in soil salinity. It demonstrates that 

machine learning algorithms, such as Random Forest, can effectively map the spatial 

distribution of salinity, offering valuable insights for identifying hypersaline areas. Such 

precision is essential for developing targeted interventions, including water management 

strategies and drainage systems, to optimize rice cultivation and mitigate soil salinization. 

Future research should focus on long-term monitoring, enhancing the understanding of 

cation interactions in soil salinity, and validating the model across diverse environments. 

This approach will improve agricultural productivity and resilience, aligning with global 

sustainability goals. 

Furthermore, effective water management, including optimizing groundwater levels, 

drainage structures, and salt-tolerant rice varieties, is essential for sustaining productivity 

under variable rainfall conditions. The simulations conducted using the HYDRUS-1D 

model and machine learning techniques provide valuable tools for predicting salinity 
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patterns in regions of Guinea-Bissau. Adjusting global models with more data from 

tropical countries, especially those with high rainfall and climatic variability, is essential. 

Expanding data collection and refining these models for tropical climates will strengthen 

agricultural resilience and food security in West Africa, offering a solid framework for 

sustainable rice cultivation. 

Some questions remain for future investigation, including: What specific strategies can 

be employed to effectively mitigate the risks associated with dike breaches in the 

Mangrove Swamp Rice Production (MSRP) system? How can the findings of this study 

be applied to rice cultivation in other coastal regions with similar environmental 

conditions outside Guinea-Bissau? Additionally, what further research is needed to 

comprehensively understand the long-term impacts of soil salinity on the growth and 

yield of different rice varieties within the MSRP system? Addressing these questions will 

be crucial for advancing sustainable rice cultivation practices and ensuring food security 

in vulnerable regions. 

This thesis contributes advancing scientific knowledge on salt dynamics in MSRP. 

Through a multidisciplinary approach, it provides empirical and visual evidence, as well 

as a biophysical characterization of the agroecosystem, integrating local farmers' 

knowledge in the country. The study identified Na⁺ and Mg²⁺ as the primary cations 

responsible for soil salinization in MSRP fields, along with the presence of hypersaline 

zones within rice paddies. Machine learning techniques, such as Random Forest, were 

calibrated and applied to map these saline areas with high precision. Likewise, numerical 

methods, including L-BFGS-B, were employed to optimize cluster-focused predictive 

multi-linear regression equations for estimating Krs values. Another relevant contribution 

was the estimation of reference evapotranspiration (ETo) under data-scarce conditions, 

with particular applicability to regions between 0° and 20°N latitude in West Africa, 
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which experience high climate variability and remain understudied. Finally, this thesis 

characterized for the first time in the context of GB the "salt-free period" proposed by 

Guei et al. (1997), showing that this period is dynamic and strongly influenced by rainfall 

patterns and groundwater depth. 
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